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. Abstract

The widespread use of batteries across various electrical applications, rang-
ing from small devices to hybrid-electric vehicles, underscores the need for
precise battery models. These models serve critical purposes such as de-
sign, optimization, monitoring, and real-time simulations. While dynamic
models are commonly employed for these applications, they require exten-
sive experimental tests to obtain essential electrical element parameters.
Alternatively, models based on solving governing equations offer greater
accuracy but often involve time-consuming computational fluid dynamics
solvers, making them impractical for real-time modeling. In this study,
an extremely fast simulation method is introduced, leveraging fundamen-
tal electrochemical relations. By assuming constant parameters along the
thickness of the electrodes, partial equations are transformed into algebraic
equations and efficiently solved. This approach yields rapid results suitable
for real-time simulations. Validation of these results against other models
and experimental data demonstrates a strong agreement, particularly in
voltage estimation. The aim of this method is to swiftly analyze parame-
ters and track their variations throughout the process, expediting estimation
procedures. The results shows that the presented method is able to capture
the CFD results with less than 2% error, while the consuming time is almost
negligible.
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1 Introduction
The strikingly high energy and power density of Li-
ion batteries have propelled their widespread use, par-
ticularly in cutting-edge applications like Hybrid Elec-
trical Vehicles (HEVs), where they have substantially
slashed pack weight and volume. This achievement has
spurred extensive research efforts aimed at creating di-
verse models to accurately simulate the intricate be-
haviors exhibited by these batteries.

The demand for real-time modeling in critical sectors
such as HEVs necessitates models that strike a delicate
balance between precision and swiftness. Among these
models, equivalent circuit models have gained traction
due to their streamlined structure, typically compris-
ing only 2-5 stages, and their relatively straightforward
parameter identification process. However, their expe-
dited computation comes at the cost of oversimplify-
ing the underlying battery system, mandating exhaus-
tive experimental testing to gather crucial electrical el-
ement parameters.

Conversely, mathematical models based on govern-
ing equations delve into solving the intricate transport
equations governing electrochemical processes. These
models, often coupled with energy equations to cap-
ture thermal behavior, harness specialized numerical
techniques reminiscent of those employed in computa-
tional fluid dynamics (CFD). By being rooted in funda-
mental physical equations, they exhibit an impressive
alignment with experimental data. Yet, their robust
accuracy and complexity come at the expense of com-
putational intensity, rendering them less efficient for
tasks requiring rapid computations, such as initial de-
sign phases, cycle optimization, real-time monitoring,
and online simulations demanding swift calculations.

Mathematical models that tackle the intricate dy-
namics of batteries by solving governing equations
(GEqs) can be broadly classified into regional and
single-domain formulations, each offering unique in-
sights into battery behavior. Regional models break
down the battery system into distinct regions—
electrodes, separator, and electrolyte reservoir—where
fundamental equations specific to each region are for-
mulated. These models then utilize a set of GEqs at
the interfaces of these regions to establish inter-region
couplings. One notable regional model, developed by
Newman [1], stands valid for porous electrodes, pro-
viding a comprehensive framework for understanding
battery dynamics.

Newman et al. have extensively applied regional
models to diverse battery types, including lithium-
based batteries [2, 3, 4] and lead-acids [5], showcasing
the versatility and applicability of these models across

different battery chemistries. In addition to Newman’s
contributions, several other researchers have made sig-
nificant strides in modeling various battery types using
GEqs. Bernardi et al. [6], H-Gu et al. [7, 8], Ledovskikh
et al. [9], and Botte et al. [10] have all contributed
valuable insights into understanding battery behavior
through the application of GEqs-based models.

In contrast, the single-domain formulation encapsu-
lates the entire battery cell structure within a unified
system of governing equations, applicable to both the
porous electrodes and the unconfined electrolyte re-
gion. Notably, a comprehensive model pioneered by
W. B. Gu et al. [11] has emerged as a significant ad-
vancement in this domain. This model stands out for
its transient nature, multidimensional scope, and full
coupling with the Navier-Stokes equation, offering a
holistic representation of battery dynamics.

Gu and Wang [11] further enhanced this model by
incorporating the energy equation, birthing a thermal-
electrochemical model adaptable to diverse battery and
fuel cell systems. Expanding upon this work, Torabi
and Esfahanian [12] leveraged the same foundational
model to develop a versatile formulation essential for
simulating thermal runaway in various battery sys-
tems. This single-domain approach has witnessed ex-
tensive applications across a spectrum of battery types,
encompassing studies on lead-acid batteries [13], fuel
cells [14], and zinc-silver oxide batteries [15].

When comparing the two aforementioned models—
dynamic models and those based on governing equa-
tions (GEqs)—it becomes evident that GEqs-based
modeling offers unparalleled accuracy in estimating
crucial battery characteristics like voltage and State of
Charge (SoC). These models excel in providing precise
simulations of battery behavior, enabling a detailed un-
derstanding of their performance.

However, a closer examination of the approach used
to solve GEqs uncovers a notable drawback: the so-
lutions obtained via CFD routines are exceedingly
time-consuming. This computational intensity ren-
ders them unsuitable for real-time simulations, limiting
their practical application primarily to design and op-
timization tasks. Regrettably, these solutions are sel-
dom employed for monitoring or incorporated into dy-
namic models due to their computational demands and
the impracticality of real-time implementation. There-
fore, while GEqs-based models offer exceptional accu-
racy, their computational complexity poses challenges
in their real-time utility, emphasizing the need for more
efficient approaches for dynamic simulations and mon-
itoring purposes in battery modeling.

Traditionally, CFD techniques have demanded sig-
nificant computational resources and time, especially
when dealing with complex electrochemical systems.
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However, the groundbreaking methodology proposed
by Amiri and Torabi [16] represents a paradigm shift.
By employing Green Function theory, they achieved an
analytical solution for the governing equations govern-
ing electrolyte concentration. This ingenious approach
bypasses the iterative and resource-intensive nature of
CFD methods, offering a direct analytical resolution to
these intricate equations.

Expanding upon this breakthrough, Torabi and Ah-
madi [17] extended the scope of analytical techniques
to tackle the potentials associated with both electrodes
and electrolytes. Their collective work highlights the
potential to completely sidestep the iterative numerical
computations inherent in CFD approaches. These ana-
lytical solutions present an innovative means to directly
derive solutions for electrochemical equations, thereby
obviating the need for time-consuming CFD iterations.

This paradigm shift enables a departure from re-
liance on numerical methods for solving electrochemical
equations, shifting towards direct analytical solutions.
These analytical methods offer a more expedient and
direct route to solving complex electrochemical prob-
lems, eliminating the computational burden associated
with conventional CFD techniques. This transforma-
tive approach not only accelerates computations but
also provides a more elegant and precise means of un-
derstanding electrochemical processes, revolutionizing
the landscape of computational modeling in this do-
main.

Despite the apparent attainment of analytical so-
lutions for electrochemical governing equations in the
works of Amiri, Torabi, and Ahmadi, the process isn’t
devoid of computational intricacies. The utilization of
Green function-based solutions for electrolyte concen-
tration, while revolutionary, necessitates a sequence of
preliminary computations. These include matrix in-
versions, integrations, and other intricate procedures,
albeit on a notably reduced scale compared to tra-
ditional numerical methods or CFD. However, the
present study seeks to transcend even these analytical
solutions, focusing on a pivotal shift in methodology.

The primary objective revolves around eliminating
the explicit need to directly solve the concentration
profile. This strategic direction stems from a prag-
matic perspective: in the vast majority of electrochem-
ical applications, the foremost parameter of interest re-
mains the voltage level. Yet, the intricacies lie in rec-
ognizing the intricate relationship between voltage and
electrolyte concentration. The voltage’s strong depen-
dency on electrolyte concentration prompts a shift in
focus – endeavoring to simulate the impact of concen-
tration rather than exhaustively solving for its detailed
profile.

This pursuit holds immense promise in radically cur-

tailing processing times. The crux lies in devising in-
novative methodologies that effectively model and cap-
ture the influence of electrolyte concentration on the
voltage level. By developing robust simulation tech-
niques that encapsulate this influence without the ex-
plicit need to resolve the concentration profile, a sub-
stantial reduction in computational burden and time
can be achieved.

This ambitious endeavor aligns with the exigency for
expedited solutions without compromising accuracy or
depth of insight. It represents a departure from both
traditional numerical iterations and even the innova-
tive analytical solutions presented by Amiri, Torabi,
and Ahmadi. The quest is to establish a streamlined
and efficient computational framework that empowers
researchers and engineers to swiftly glean crucial in-
sights into electrochemical systems, primarily focusing
on the voltage parameter, which remains the linchpin
in diverse electrochemical applications.

In our current investigation, we propose a novel ap-
proach termed the semi-analytical model, which hinges
on the foundational chemical and electrochemical prin-
ciples governing Li-ion batteries. Leveraging these elec-
trochemical relations, our model offers a robust com-
prehension of the discharge phenomena intrinsic to Li-
ion batteries. Remarkably, it demonstrates a level of
accuracy comparable to CFD models, albeit with rea-
sonable deviations.

The methodology employed involves simplifying the
solution of governing equations, transforming complex
partial differential equations into algebraic relations.
These streamlined relations allow for rapid solutions
without the need for intricate numerical solution meth-
ods. Consequently, our model achieves a computa-
tional speed akin to that of an equivalent circuit model,
rendering it suitable for real-time simulations—an at-
tribute crucial for practical applications.

To validate our model, we rigorously compare its pre-
dictions with experimental data sourced from reputable
literature and against other numerical models. This
comprehensive evaluation demonstrates a high level of
agreement between our model’s outcomes and exper-
imental observations, underscoring its capacity to ac-
curately simulate and predict the behavior of Li-ion
batteries.

2 Mathematical Model
Figure 1 displays the schematic representation of the
Li-ion battery utilized in this research. The battery
cell structure comprises a Cu collector paired with a
LiXC6 negative electrode, and an Al collector support-
ing a LiyMn2O4 positive electrode, separated by a sep-
arator. Within this setup, both positive and nega-
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Fig. 1. Schematic of a Li-ion cell

tive electrodes feature porous solid matrices flooded by
LiPF6. During the charge and discharge processes, spe-
cific electrochemical reactions take place at the positive
and negative electrodes, respectively, disregarding any
side reactions:

Liy−xMn2O4 +xLi+ +xe−
discharge−−−−−−⇀↽−−−−−−

charge
LiyMn2O4 (1)

LixC6

discharge−−−−−−⇀↽−−−−−−
charge

Li0C6 + xLi+ + xe− (2)

The Li-ion battery’s governing equations have been
extensively examined and presented in prior work [18],
under a set of specific assumptions, as outlined below:

• There is an absence of a gas phase within the bat-
tery system.

• The electrolyte is presumed to be a concentrated
binary solution.

• Side reactions within the battery are intentionally
disregarded.

• Charge transfer kinetics are modeled using the
Buttler-Volmer equation.

• Any volumetric changes within the electrodes are
neglected, assuming constant porosities.

• The direction of the current flow is assumed to be
perpendicular to the electrode plates, leading to
the neglect of two and three-dimensional effects.

• A very small Biot number is assumed within the
system.

• Parameters along the length of the electrodes are
considered constant.

These assumptions provide a framework for model-
ing the behavior of Li-ion batteries under specific ide-
alized conditions, allowing for a focused exploration of
the battery’s electrochemical dynamics while simplify-
ing the overall mathematical complexity.

According to [18], the electrochemical behavior of the
batteries can be described by the conservation laws of
chemical species and electrical charge. These conserva-
tive laws are fully discussed in references [2, 3, 4] hence
for a complete discussion, these laws are given here but
the details are not repeated.

2.1 Conservation of chemical species
Conservation of lithium ion in electrolyte yieds to:

∂(ϵece)

∂t
= ∇ ·

(
Deff

e ∇ce
)
+

1− to+
F

jLi −
ie · ∇to+

F
(3)

In Equation (3), ce denotes the concentration of
lithium ions in the electrolyte phase, while ϵe signifies
the electrolyte phase porosity, and F represents Fara-
day’s constant. The parameter to+ refers to the transfer
number of Li+, associated with solvent velocity. Due to
a lack of experimental data, this parameter is assumed
constant, leading to the vanishing of the last term in
Equation (3).
Deff

e stands for the effective electrolyte diffusion co-
efficient, which is determined by the Bruggeman rela-
tion [17]:

Deff
e = Deϵ

1.5
e (4)

Here, ϵe represents the porosity of the electrolyte
medium. The reaction current, denoted as j, is a con-
sequence of the production and consumption of Li+
species in the cell, and it is formulated as:

jLi =
Iapp
Ad

(5)

where A is the projected area of the electrode and d is
its thickness.

The conservation of lithium in the solid phase results
in:

∂(ϵscs)

∂t
=

jLi

F
(6)

By simplifying Equation (6), Cs can be determined
using the following relation:



Hydrogen, Fuel Cell & Energy Storage 10(2023) 339-353 343

δCs =
jLidt

Fϵs
(7)

Conservation of lithium particles at the solid-
electrolyte interface is described by:

Cs,e = Cs +
jLilse
asFDs

(8)

Here, Cs,e denotes the concentration at the inter-
face, while Cs represents the concentration in the solid
phase. The parameter lse characterizes the microscopic
diffusion length of Li+ within the solid active materials.
For insertion electrodes assumed to consist of spherical
particles with a radius of rs, lse is expressed as per [11]:

lse =
rs
5

(9)

In Equation (9), rs signifies the radius of the spher-
ical particles. The specific interfacial area of the elec-
trode, denoted by as, represents the ratio of the dif-
fusion length lse to the product of the electrode area,
Faraday’s constant (F ), and the solid phase diffusion
coefficient (Ds). Assuming spherical particles in the
insertion electrodes, as is computed as:

as =
3ϵs
rs

=
3(1− ϵe − ϵp − ϵf )

rs
(10)

In Equation (10), ϵs, ϵe, ϵp, and ϵf represent the
respective volume fractions of the solid phase, liquid
electrode phase, polymer matrix, and conductive filler.
Equation (10) offers a means to calculate as based on
specified volume fractions and particle radius, enabling
a deeper understanding of the electrode’s specific inter-
facial characteristics.

2.2 Conservation of electrical charge
In an electrochemical battery cell, the flow of electrical
current through the external circuit occurs via elec-
trons, which follows Ohm’s law as described below:

∇ · (σeff∇ϕs)− jLi = 0 (11)

Here, ϕs denotes the potential within the solid
phase, σeff represents the effective conductivity, and jLi

stands for the interfacial current density at the solid-
electrolyte interface.

In the electrolyte phase, the flow of applied current
is facilitated by charged ions, for which a modified form
of Ohm’s law is applicable:

∇ · (κeff∇ϕe) +∇ · (κeff
D ∇ ln(ce)) + jLi = 0 (12)

Here, ϕe signifies the potential within the electrolyte
phase, κeff denotes the effective ionic conductivity,
κeff
D stands for the diffusional conductivity of the elec-

trolyte, and jLi represents the interfacial current den-
sity at the solid-electrolyte interface. This modified
form accounts for the unique ion-driven current flow
within the electrolyte phase, governed by its conductiv-
ity and diffusional characteristics in conjunction with
the interfacial current density at the solid-electrolyte
interface.

2.3 Cell Voltage
When a battery is connected to an external current,
denoted as I, the cell’s voltage can be calculated using
the formulation derived from [17]:

E = Eoc± [(ηct)a+(ηc)a]± [(ηct)c+(ηc)c]−IRi (13)

Here, Eoc stands for the open circuit voltage, (ηct)a
and (ηct)c represent activation polarization or charge-
transfer overvoltage at the anode and cathode, respec-
tively. Similarly, (ηc)c and (ηc)a denote concentration
polarization at the cathode and anode. Ri signifies the
internal cell resistance, and I represents the current
flowing through the cell. The (–) and (+) signs in the
equation indicate discharge and charge states, respec-
tively.

This equation highlights the dependence of cell volt-
age variations during charge and discharge processes
on open circuit voltage, overpotentials, and internal
resistances. As concentrations are assumed to be uni-
form along the electrodes in this model, resulting in
no electrolyte gradient, concentration polarizations are
assumed to be zero.

Typically, the open circuit voltage is contingent upon
solid concentrations. This relationship is typically doc-
umented in battery handbooks (e.g., [19]) and can be
approximated by the following relation:

Eoc = U1 − U2 (14)

The open circuit potential itself varies with tempera-
ture and can be determined using the following expres-
sion:

Uj = Uj,ref + (T − Tref)
∂Uj

∂T
(15)

Considering the Biot number to be negligible, any
temperature variation within the cell is disregarded,
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rendering the second term of Equation (15) effectively
zero. The reference values U1,ref and U2,ref are derived
using the following equations [4]:

U1,ref = 4.19829

+ 0.0565661 tanh (−14.5546SoC + 8.60942)

− 0.0275479

(
1

0.998432− SoC

0.492465

− 1.90111

)
− 0.157123 exp(−0.04738SoC8)

+ 0.810239 exp[−40(SoC − 0.133875)] (16)

U2,ref = −0.16+1.32 exp(−3SoC)+10.0 exp(−2000SoC)

(17)

These equations enable the calculation of reference
values, taking into account various factors dependent
on the State of Charge (SoC).

The overpotential (ηct) at both the anode and cath-
ode can be determined utilizing the Butler-Volmer
equation [11]:

inj = ioj

[
exp

(
αajF

RT
ηj

)
− exp

(
−αcjF

RT
ηj

)]
(18)

This equation outlines the assessment of overpo-
tentials, involving various factors like current density,
transfer coefficients, Faraday’s constant, gas constant,
temperature, and the overpotential (ηj).

Furthermore, αa and αc represent the anodic and ca-
thodic transfer coefficients, respectively, governing the
kinetics of the electrode reactions. These coefficients
influence the rate of electron transfer during the redox
process at the anode and cathode. The Faraday con-
stant F , a fundamental physical constant, signifies the
amount of charge carried by one mole of electrons and
is approximately equal to 96, 485 coulombs per mole.
Meanwhile, R stands for the universal gas constant,
a fundamental constant in thermodynamics, valued at
approximately 8.314 joules per mole-kelvin.

The current density io characterizes the rate of an
electrode reaction under standard conditions, typically
expressed in amperes per square centimeter. Its de-
termination involves various factors and is computed
using:

• Temperature,

• Electrolyte properties,

• Concentration gradients,

• Catalyst activity,

• Surface area of the electrode,

• Nature of the electrode material,

• Reaction mechanism, and

• other electrochemical parameters

This current density plays a pivotal role in quan-
tifying the electrochemical activity at the electrode-
electrolyte interface, reflecting the kinetics of charge
transfer during the redox reactions. Its calculation
involves intricate considerations of temperature ef-
fects, electrolyte characteristics, concentration gradi-
ents, catalyst efficiency, and numerous electrochemical
parameters intricately linked to the specific electrode
reactions under investigation.

According to Torabi [17], particularly for lithium
batteries, this crucial parameter ioj can be expressed in
a specific format, as elucidated by the following equa-
tion:

ioj = k · ceαaj · (cs,max − cse)
αaj · (cse)αcj (19)

Here, k signifies the kinetic transfer rate constant, a
crucial factor characterizing the speed of the electro-
chemical reaction. This equation encapsulates the in-
tricate relationship between the current density ioj and
various parameters. Notably, ce represents the concen-
tration of lithium ions in the electrolyte phase, while
cs,max symbolizes the maximum possible concentration
within the solid phase. The terms cse portray the aver-
aged lithium concentration at the solid-electrolyte in-
terface.

The exponents αaj and αcj denote the anodic and
cathodic transfer coefficients, respectively, influencing
the reaction kinetics and dictating the relationship be-
tween the current density and the concentrations in-
volved. The interplay between these variables in Equa-
tion (19) showcases the complex nature of the elec-
trochemical processes occurring within lithium batter-
ies, providing insights into the determinants governing
their performance and efficiency.

2.4 State of charge (SoC)
The Local State of Charge (SoC) is an essential metric
utilized in equations (16) and (17) to gauge the electro-
chemical state within the battery. This parameter sig-
nifies the localized charge level for each electrode and is
instrumental in evaluating and managing the battery’s
performance. In the context of lithium batteries, the
SoC pertains to the fraction of the concentration at
the solid-electrolyte interface (Cs,e) and the maximum
solid concentration (Cs,max) within an electrode. This
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Positive Electrode

Rs+ Re+

Separator
Rss

Res

Negative Electrode

Rs− Re−

Fig. 2. Schematic of resistance model

ratio, as elucidated by Botte [20], is mathematically
represented as:

SoC =
Cs,e

Cs,max
(20)

Here, Cs,e stands for the concentration at the solid-
electrolyte interface, portraying the actual concen-
tration of lithium ions near the electrode-electrolyte
boundary. On the other hand, Cs,max represents the
maximum achievable concentration within the solid
phase of the electrode, indicating the highest capacity
for lithium storage within the electrode material. The
SoC, being a ratio between these values, offers a local-
ized assessment of how much charge the electrode has
stored relative to its total capacity, serving as a crucial
parameter for assessing the battery’s operational status
and its remaining energy capacity.

2.5 Cell Resistance
The incorporation of electrode resistance within bat-
tery models is a pivotal aspect and various equivalent
circuit models have been developed to account for this
crucial parameter. These models, while serving the
common purpose of integrating resistance into battery
analysis, encompass a diverse range of approaches, each
with its unique set of advantages and limitations.

Among these models, Torabi introduced a notable
approach delineating electrode resistance within bat-
teries [17] which is shown in figure 2. Renowned
for its simplicity and inherent physical interpretation,
Torabi’s model stands out as an accessible yet insight-
ful representation of electrode resistance dynamics. Its
conceptual simplicity aids in grasping the underlying
electrochemical processes, offering a clear linkage be-
tween theoretical understanding and practical applica-
tion.

In our comprehensive battery model, the utilization
of Torabi’s proposed model assumes a central role. By
integrating this specific electrode resistance model, we
aim to capture the voltage drop attributed to electrode
resistance within our analytical framework. This inclu-
sion enables a more accurate portrayal of the battery’s

behavior under varying operational conditions, enrich-
ing our model’s fidelity in predicting performance and
behavior across diverse scenarios.

Every type of electrode resistance model, like
Torabi’s, has its good and bad points. Torabi’s model
is simple and relates closely to the real world, but
other models might be better at showing very detailed
changes in resistance or explaining resistance in certain
situations. Picking a model usually depends on how ac-
curate it is, how easy it is to use on a computer, and
what parts of how batteries work it focuses on. So, sci-
entists are still studying and comparing these models
to get better at modeling batteries and understanding
how they work.

As illustrated in figure 2, each electrode comprises
two resistances arranged in series. One of these resis-
tances characterizes the conductivity within the solid
components, representing the electrical resistance at-
tributed to electron transport. The second resistance
accounts for the ionic movement, reflecting the elec-
trical resistance arising from ion migration within the
electrode material. Considering that electrode reac-
tions occur primarily at the interface between the elec-
trode and electrolyte, these two resistances are appro-
priately modeled in series, acknowledging their simulta-
neous influence on the electrochemical processes. This
serial representation enables a more comprehensive un-
derstanding of the dynamic interplay between electron
transport and ion migration, crucial factors shaping the
overall performance of the battery system.

In contrast, when considering the resistance of the
separator region in simulations, the resistances are
modeled in parallel. This distinction arises from the
inherent nature of the separator zone, where no elec-
trochemical reactions take place. Consequently, the
flow of current is not coordinated within this region.
Here, both electrons and ions can traverse through the
separator, despite its lack of electron conductivity. In
theory, the solid resistance within the separator region
should approach infinity due to its non-conductive na-
ture. However, to ensure a comprehensive model, this
term is included, acknowledging that even the most
effective insulators possess some minimal level of con-
ductivity. It’s essential to note that in the vast ma-
jority of scenarios, this value is negligible and can be
disregarded in practical analyses, although its inclusion
contributes to a more complete theoretical framework.

The calculation of resistance in a system is a funda-
mental aspect in understanding its electrical behavior.
Specifically, in the context of solid electrodes, resis-
tance can be computed utilizing well-established for-
mulas. The resistance (Rs) of a solid electrode can be
determined using a general formula that considers its
width (d), conductivity (σ) of solid active materials,
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and the nominal cross-sectional area of the electrode
(A). This relationship is described by the equation:

Rs =
d

σeffA
(21)

Here, σeff signifies the effective conductivity of the
solid active material, presenting a function reliant on
the porosity of the solid phase. According to Wang et
al. [11], the effective solid active material conductivity
(σeff) is expressed as the product of the porosity of
the solid phase (ϵs) and the intrinsic conductivity (σ),
indicated by the equation:

σeff = ϵsσ (22)

These formulations offer insights into the quantifica-
tion of resistance within solid electrodes, facilitating a
deeper comprehension of their electrical characteristics
and behavior within electrochemical systems.

Expanding on the concept of resistance, another im-
portant aspect lies in understanding and calculating
the resistance associated with electrolytes. This type
of resistance mirrors the principles applied in deter-
mining the resistance of solid particles. However, in
this case, the calculation involves employing effective
ionic conductivity instead of effective solid conductiv-
ity. The resistance of an electrode within an electrolyte
can be quantified using the following formula:

Re =
d

κeffA
(23)

Where Rs represents the resistance, d denotes spe-
cific dimensions, κeff signifies the effective ionic con-
ductivity, and A stands for the area. This equation
allows for a quantitative understanding of electrolyte
resistance in electrochemical systems.

The ability of an electrode to conduct electricity de-
pends a lot on the mix of substances in the electrolyte
it connects with. In a special situation where the elec-
trolyte contains LiPF6 in a specific mix of two liq-
uids – ethylene carbonate (EC) and dimethyl carbonate
(DMC) in a careful ratio of 2 parts EC to 1 part DMC,
figuring out a number called κ becomes really impor-
tant. This κ number tells us how well electricity can
move, and it’s explained in detail in the method sug-
gested by Wang and their team [11]. The conductivity
of the electrolyte, in this case, is given as:

κ = 4.1253× 10−4 + 5.007ce − 4.7212× 103ce
2

+ 1.5094× 106ce
3 − 1.6018× 108ce

4 (24)

κeff is determined by bruggeman relation:

κeff = κϵ1.5e (25)

The resistance associated with the separator can be
approached using the formula Rs = d

κeffA
, which ap-

plies specifically because the separator lacks an elec-
trolyte phase. However, disentangling the resistance
inherent in the Solid Electrolyte Interphase (SEI) layer
from the contact film resistance—or even the intercon-
nect resistance between cells—poses a challenge. To
compensate for this complexity, an additional resis-
tance factor is introduced to model the interface be-
tween the collector and the electrode, represented as
Rf = 20Ω · cm2. This inclusion serves to simulate the
effects of the double layer capacitance, which induces
the initial voltage drop.

The comprehensive calculation encompassing these
various resistances provides a holistic perspective on
the overall resistance within the cell. This aggregate
analysis offers insights into the cumulative impact of
these distinct resistive elements on the cell’s overall
performance and behavior.

The resistance added at the interface between the
collector and the electrode (Rf = 20Ω ·cm2) is a result
obtained through a process of trial and error. Lacking
a specific reference or established data to precisely de-
termine this resistance, its value was iteratively derived
to best emulate the effects of the double layer capaci-
tance causing the initial voltage drop. This empirical
approach was employed to simulate and approximate
the complex behavior observed at this interface within
the cell configuration.

2.6 Summary of the model
In essence, the system of equations encompassing (3),
(6), (13), and (20), along with the specified initial
and boundary conditions, undergoes rigorous computa-
tional analysis. This computational framework serves
to determine the variations in concentration, voltage,
and State of Charge (SoC) within the cell. The sequen-
tial flowchart illustrating these calculations is depicted
in Figure 3.

The system of equations represented by (3) and (6)
embodies a temporal and spatial dependence, necessi-
tating initial and boundary conditions for a compre-
hensive solution. A prudent and often employed as-
sumption for these initial conditions revolves around
the concept of uniform properties across the system.
This assumption implies a state of uniformity, denoted
by the initial conditions:

ce = c◦e and cs = c◦s (26)
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Fig. 3. Engineering model algorithm

Here, the electrolyte concentration ce and solid phase
concentration cs are considered to begin at an equilib-
rium state, characterized by their respective initial val-
ues c◦e and c◦s. This assumption lays the foundation
for the system’s behavior, establishing a starting point
from which the temporal and spatial dynamics can be
comprehensively studied.

On the other hand, equations (13) and (20) are time–
independent for which there is no need for describing
any initial conditions. Boundary conditions are re-
quired for the four PDEs. Since the computa- tional do-
main is located between the two current collectors, the
symmetry boundary condition is applicable to equa-
tions (12), (13) and (15); i.e.

∂ce
∂x

= 0,
∂cs
∂x

= 0,
∂ϕe

∂x
= 0 (27)

The system of equations described above forms a ro-
bust framework for simulating the behavior of lithium-
ion batteries, providing valuable insights into their dy-
namic characteristics. However, within practical appli-
cations, the concentration of electrolyte often takes a
backseat in terms of immediate relevance. Real-time
scenarios, such as monitoring, fault detection, and on-
line control systems, primarily prioritize and heavily
rely on the battery’s voltage level as the paramount
parameter of interest.

3 Results and Discussion
3.1 Simplified formulation
Consider the multifaceted landscape of Electric Vehi-
cles (EVs) where online monitoring systems play a piv-

otal role. These systems continuously track various
parameters in real-time to ensure optimal performance
and safety. One of the most common applications is
the use of Voltage Monitoring Systems. EVs rely ex-
tensively on monitoring the battery voltage to gauge
its state, predict its behavior, and safeguard against
potential faults or failures. Detecting fluctuations or
anomalies in voltage levels becomes crucial for pre-
emptive actions, such as triggering alerts or adapting
the vehicle’s operations to prevent any potential issues.

Moreover, fault-detection scenarios in EVs lever-
age online monitoring systems to swiftly identify de-
viations from expected voltage levels. For instance,
sudden drops or irregular voltage patterns might sig-
nal underlying issues like cell degradation, imbalance,
or potential thermal runaway. These systems enable
prompt identification and initiation of corrective mea-
sures, averting potential hazards and extending the
battery’s lifespan.

Online control mechanisms in the EV domain har-
ness real-time voltage data to regulate charging and
discharging processes. This allows for dynamic ad-
justments to optimize performance, enhance efficiency,
and ensure battery longevity. Advanced Battery Man-
agement Systems (BMS) continuously analyze voltage
parameters to make informed decisions about charg-
ing rates, energy utilization, and thermal management
strategies. By dynamically controlling these factors
based on voltage feedback, the BMS ensures safe and
efficient operation of the battery pack.

These concepts extend beyond EVs, finding applica-
tions in renewable energy storage systems, grid-level
energy management, and portable electronics. In solar
or wind energy setups, online monitoring of voltage lev-
els assists in regulating energy flow, managing storage,
and detecting faults to ensure reliable power genera-
tion. Similarly, in portable devices, voltage monitoring
systems enable intelligent power management, optimiz-
ing battery usage and enhancing user experience.

In essence, while the system of equations provides
a fundamental framework for battery simulation, real-
world applications of EVs heavily rely on voltage-based
monitoring, fault detection, and online control systems
to ensure safety, efficiency, and longevity of battery
systems in a wide array of contexts.

The array of applications highlighted in the preced-
ing discussion underscores a significant aspect: none of
these applications inherently hinge on or necessitate an
explicit understanding or simulation of electrolyte con-
centration, as described by equation (3). However, the
intricate interdependency between concentration pro-
files and voltage levels cannot be disregarded. While
these applications primarily revolve around voltage-
based monitoring and control, the inherent link be-
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tween concentration and voltage remains paramount.
In this pursuit, the challenge lies in devising a

methodology that allows for circumventing the detailed
simulation of equation (3) while ingeniously incorpo-
rating its influence into the voltage profile. The funda-
mental essence is to capture the consequential impact
of concentration variations on voltage without explic-
itly solving for concentration profiles. This strategic
shift aims to streamline computations by sidestepping
the necessity for explicit concentration simulations, yet
accurately integrating the influence of concentration
dynamics on voltage behaviors.

The quest thus transforms into identifying and quan-
tifying the intricate relationship between concentration
variations and their corresponding effects on voltage
levels. By extracting critical insights into how con-
centration changes manifest in voltage fluctuations, re-
searchers strive to establish a predictive framework.
This framework aims to model and embed the intri-
cate effects of concentration dynamics on voltage pro-
files without explicitly resolving concentration equa-
tions. Such an approach promises to significantly ex-
pedite computational processes while preserving the
essential insights necessary for voltage-centric electro-
chemical applications.

This endeavor aligns with the broader aim of op-
timizing computational efficiency without compromis-
ing the precision and depth of understanding required
for various practical applications. The challenge lies
in innovatively capturing the essence of concentration-
voltage interplay within a simulation framework that
bypasses the explicit solution of concentration profiles
while faithfully representing their impact on voltage
dynamics.

Looking at equation (3), it becomes evident that ne-
glecting the last term wouldn’t compromise accuracy
significantly due to the nearly constant nature of the
transference number for charge-carrying ions within
the electrolyte. From a computational standpoint,
the most time-intensive component lies within the first
term on the right-hand side of the equation. This term
represents the diffusion component, which, mathemat-
ically speaking, possesses an elliptical nature, necessi-
tating numerous iterations for convergence.

To incorporate the effect of electrolyte concentration
into the model, we embark on two distinct simplifica-
tions to discern their accuracy:

1. For our initial approximation, we opt to omit the
diffusion term, resulting in a modified concentra-
tion equation as follows:

∂(ϵece)

∂t
=

1− to+
F

jLi (28)

This formulation characterizes the concentration
profile as a lumped parameter without spatial vari-
ation. While this assumption tends to hold ground
for lower discharge currents, it may fall short in
delivering accurate results, as we’ll soon explore.

2. As for the second approach, to circumvent the
complexities stemming from the divergence opera-
tor, we reframe equation (3) in the following man-
ner:

∂(ϵece)

∂t
= Deff

e ∇ce +
1− to+
F

jLi (29)

Here, we retain some influence of electrolyte con-
centration. As we shall observe, this inclusion
ameliorates the voltage levels to a reasonable de-
gree of acceptance.

These different approaches to handling the concen-
tration equation aim to strike a balance between com-
putational efficiency and accuracy, paving the way for
a refined understanding of how the electrolyte concen-
tration impacts the overall electrochemical system’s be-
havior, particularly in relation to voltage dynamics.

In the second approach, there’s no explicit necessity
to model the concentration gradient on the right-hand
side of the equation (29). A straightforward method
to circumvent this is to presume a linear concentra-
tion profile extending between the positive and nega-
tive electrodes. Consequently, the concentration profile
simplifies to:

∇ce =
cep − cen
xp − xn

(30)

Here, cep and cen denote the lumped concentrations
of the positive and negative electrodes, respectively.
Additionally, xp and xn represent the coordinates cor-
responding to the centers of the positive and negative
electrodes.

This formulation encapsulates a simplified represen-
tation of the concentration gradient, leveraging the as-
sumption of linearity between the two electrodes. By
utilizing this linear interpolation, the model sidesteps
the intricate computation of the concentration gradi-
ent, allowing for a more straightforward integration of
concentration effects into the electrochemical model’s
dynamics, particularly in relation to the voltage profile.

3.2 Case study
The validation of the model’s effectiveness involves a
meticulous simulation of the discharge process under
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diverse current conditions. This rigorous examination
scrutinizes the model’s capacity to accurately encapsu-
late real-world dynamics, ensuring its reliability across
a spectrum of operational scenarios. Essential traits
characterizing the cell’s behavior, meticulously cate-
gorized and described, can be found in Tables 1 and
2. These tables comprehensively outline key param-
eters governing the cell’s performance, encompassing
vital aspects such as electrode composition, electrolyte
properties, and geometric specifications.

For a more exhaustive elucidation of the cell’s multi-
faceted properties, Doyle et al.’s seminal work [4] stands
as a rich source. Their comprehensive study delves into
intricate details regarding the cell’s behavior, offering
invaluable insights into nuanced phenomena and gov-
erning principles shaping the electrochemical system.
The referenced work serves as a cornerstone, provid-
ing an extensive compendium of experimental observa-
tions, theoretical frameworks, and empirical data cru-
cial for understanding the cell’s intricate dynamics.

This meticulous validation process and the extensive
documentation of the cell’s characteristics not only re-
inforce the model’s credibility but also contribute sig-
nificantly to the broader understanding of battery sys-
tems. Such rigorous validation practices, coupled with
comprehensive referencing of pertinent literature, are
pivotal in establishing the model’s fidelity and its ap-
plicability in real-world scenarios, thereby advancing
the field of electrochemical modeling and simulation.

Table 1. Electrodes Parameters

Parameters Negative Electrode Positive Electrode
LixC6 LiyMn2O4

Ds ( cm
2 s−1) 3.9× 10−10 10× 10−10

σ0 (S cm−1) 1.0 0.038
αa,c 0.5 0.5
i0 (mA cm−2) 0.11 0.08
Cs,max (mol dm−3) 26.39 22.86
Stochiometry 0.53 0.17
d (µm) 100 174
rs (µm) 12.5 8.5
C0

s (mol dm−3) 13.99 3.9
ϵe 0.357 0.44
ϵp 0.146 0.186
ϵf 0.026 0.073

One of the most readily determinable parameters
within the system pertains to the solid concentration of
lithium. Equation (7) intricately reveals that this par-
ticular parameter exhibits a direct dependency solely
on the current density denoted as jLi, constituting an
input parameter of the system.

The visualization presented in Figure 4 meticulously
depicts the dynamic alteration in solid particle con-
centration within both the positive and negative elec-
trodes throughout a 1C discharge cycle. An insightful
observation surfaces as the concentration in the nega-

Table 2. Other Parameters

Parameter Value
T (◦C) 25
A ( cm2) 10452
Ce (mol dm−3) 5.00
t0+ 0.363
De ( cm

2 s−1) 7.5× 10−7

ds (µm) 53
F (C mol−1) 96487
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Fig. 4. Solid particles concentration change in
positive and negative electrode during 1C

discharge

tive electrode plummets to its minimum value before
the corresponding concentration in the positive elec-
trode ascends to its peak. This temporal discrepancy
between the two electrodes elegantly underscores a crit-
ical insight: the limiting element dictating the battery’s
performance is indeed the concentration of solid parti-
cles within the negative electrode.

This disparity in concentration dynamics between
the electrodes holds profound implications for the over-
all functioning and efficiency of the battery system.
The distinctive behavior highlights the pivotal role
played by the negative electrode’s solid particle con-
centration in dictating the battery’s discharge process.
This insight underscores the significance of optimizing
and managing the solid particle concentration within
the negative electrode to enhance the overall perfor-
mance and longevity of the battery system. Such nu-
anced observations gleaned from detailed visual repre-
sentations like Figure 4 serve as fundamental guide-
posts for refining battery designs and optimizing elec-
trochemical systems.

The figure presented herein emanates from the so-
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Fig. 5. SoC variation in positive and negative
electrodes during the time for a current of 1C.

lution of equation (7), as elegantly expressed by (8).
Notably, the equation inherently presents itself as a
representation of a lumped parameter, mirroring the
behavior exhibited by the results gleaned from its solu-
tion. The inherent characteristic of equation (7) and its
solution vividly align with this lumped parameter na-
ture, offering a simplified but comprehensive depiction
of the system’s dynamics.

A closer examination of (7) reveals an intriguing at-
tribute: its intrinsic linearity when the parameter jLi

remains constant. Given the controlled nature of the
discharge test operating under a constant current, this
parameter indeed maintains a steady and unchanging
profile. Consequently, the equation’s temporal varia-
tion assumes a linear trajectory, distinctly portrayed
in the figure. This linear temporal behavior distinctly
emerges as a direct consequence of the constancy of jLi,
a crucial feature elucidated by the equation’s dynamics.

The evident linearity exhibited in both the equa-
tion and its corresponding results corroborates the pre-
dictability and stability within this electrochemical sys-
tem under a constant current discharge scenario. This
alignment between theoretical formulation and empiri-
cal observation fortifies the model’s accuracy in repre-
senting the battery’s behavior, particularly highlight-
ing the direct influence of constant current on the tem-
poral evolution depicted in the figure. Such profound
insights derived from equation (7) not only affirm the
model’s reliability but also unveil critical nuances re-
garding the battery’s temporal behavior under specific
discharge conditions.

The direct calculation of cs leads us to the determi-
nation of State of Charge (SoC), as per (20), a rela-
tionship vividly depicted in Figure 5. In the context

of lithium-ion batteries, during charging or discharging
cycles, a transfer of Li ions between electrodes occurs.
Consequently, while one electrode experiences a decline
in its SoC, the other undergoes an increase.

The linearity evident in the variation of cs (as illus-
trated in Figure 4) correlates directly with the linear
trend observed in the SoC for both electrodes, as con-
firmed by Figure 5. The figures collectively affirm this
linear correspondence, showcasing the dynamic SoC
changes for each electrode. Specifically, the positive
electrode initiates at roughly SoC ≈ 0.2, steadily ris-
ing during discharge, while the negative electrode com-
mences at approximately SoC ≈ 0.5, descending until
fully discharged. This interplay illustrates the recipro-
cal SoC alterations between electrodes, a fundamental
dynamic in the operation of lithium-ion batteries.

The subsequent parameter open to calculation is the
electrolyte concentration variation. As delineated by
equation (28), this parameter, akin to the solid lithium
concentration, depends solely on jLi. However, a sub-
tle but crucial distinction emerges when contemplating
the utilization of equation (29) in this regard. Un-
der the framework of equation (28), the electrolyte
concentration, much like the solid concentration of
lithium, demonstrates an exclusive reliance on the in-
put parameter jLi. This direct relationship allows for
a straightforward determination of the electrolyte con-
centration, mirroring the inherent simplicity found in
assessing the solid concentration of lithium. However,
the utilization of equation (29) introduces an additional
layer of complexity. In this scenario, the determina-
tion of electrolyte concentration necessitates incorpo-
rating the results derived from the preceding time step.
Unlike the more straightforward dependency observed
in (28), equation (29) introduces a temporal linkage,
where the current electrolyte concentration is contin-
gent upon its previous state. Despite this temporal
aspect, both equations ultimately converge on the fun-
damental principle that the electrolyte concentration
remains exclusively dependent on the input parameter
jLi.

This exclusive dependency on jLi streamlines the
computational process, facilitating the calculation of
electrolyte concentration without encountering signif-
icant complexities. Whether employing the simplified
approach of equation (28) or factoring in the tempo-
ral continuity as delineated by equation (29), both for-
mulations converge on the unchallenging determination
of electrolyte concentration, thereby underscoring the
fundamental role played by jLi in governing this crucial
parameter within the electrochemical system.

In Figure 6, the visualization depicts the fluctuation
in electrode concentration under two distinct condi-
tions: one disregarding the diffusion term and the other
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replacing it with ∂ce
∂x instead of the diffusion term gra-

dient. Notably, both outcomes exhibit noticeable de-
viations from Doyle’s findings [4], primarily due to the
simplification of the diffusion gradient term. It’s cru-
cial to observe that within this depiction, the lithium
ion concentration portrays an increase in one electrode
while concurrently decreasing in the other. This dy-
namic shift occurs as ions migrate from one electrode
to another, a phenomenon that elucidates the presence
of two distinct branches in each simulation method.

The comparison between the simple lumped model
(given by (28)) and Doyle’s actual data (represented
by square symbols) reveals a big difference. The basic
model shows a linear pattern with a steep slope over
time, which doesn’t match the real data. When we add
a concentration gradient to the equation, something
interesting happens: the gradient gets much stronger.
Even though it doesn’t exactly match the real numbers,
this change significantly boosts how the concentration
varies. This enhancement is crucial because it means
our predictions for voltage will be more accurate when
we include these concentration changes. This difference
between our simulated data and the real stuff shows
how important it is to consider factors like concentra-
tion gradients. By understanding these details better,
we can make more precise models for electrochemical
studies, closing the gap between our simulations and
the actual results we see in experiments.

With the electrolyte concentration specified for each
electrode, determining the internal resistance becomes
feasible through the application of equations (21) and
(23). Notably, a constant value for σ0 has been em-
ployed, signifying that the solid resistance remains
consistent over time. However, referring to (24), it
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Fig. 7. Ohmic resistance modeled based on the
conductivity of solid particles and electrolyte

described on fig2.

becomes evident that the electrolyte resistance is in-
tricately linked to concentration variations. Conse-
quently, this resistance dynamically shifts in tandem
with alterations in the electrode concentrations.

In Figure 7, the internal resistance’s temporal evolu-
tion unfolds. Notably, it maintains a relatively steady
value for an extended duration, surging sharply to-
ward the end of discharge—a consistent behavior ob-
served across various lithium-ion cell types. Typically,
these batteries exhibit higher internal resistance when
highly charged (SoC > 0.85) or significantly discharged
(SoC < 0.15), while intermediate states tend to display
a relatively constant and lower resistance.

Given that the simulation commenced with a state
of charge around 80%, the depicted trend aligns rea-
sonably well with expected behavior. However, the ab-
sence of available real or simulated comparative data
limits a more comprehensive validation of the model’s
accuracy. Nevertheless, the observed pattern corre-
sponds with established industry trends, reinforcing
the plausibility of the simulation’s outcome.

The ultimate objective of this simulation is to chart
the voltage variation, a pivotal metric in our analysis.
Captured in Figure 8, this portrayal juxtaposes the
simulated voltage data against experimental findings
from Doyle’s research [4]. The simulation specifically
targets a 1.75Ah cell, aligning the depicted discharged
currents—0.1C, 1C, and 4C—with this cell’s specifica-
tions.

Delving into the context of lithium-ion battery ap-
plications, these discharge rates hold significant im-
plications. A discharge rate of 0.1C signifies an ex-
tremely slow discharge, while 1C represents a notably
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rapid discharge. Pushing the boundaries, a 4C dis-
charge rate stands as an exceptionally swift discharg-
ing scenario. However, it’s worth noting that not all
lithium-ion batteries are equipped to withstand such
immense discharge rates; their performance may vary
under different load conditions.

This distinction in discharge rates serves as a critical
benchmark, highlighting the diverse capabilities and
limitations of lithium-ion batteries in real-world appli-
cations. It underscores the necessity of understanding
these discharge rates’ impact on voltage variations to
gauge the performance and feasibility of these batteries
across different scenarios.

As discussed in the mathematical modeling section,
the recently introduced model exhibits heightened ac-
curacy, particularly evident at low-rate discharges. Im-
pressively, the depicted results in the figure showcase
the model’s ability to precisely forecast cell voltage
drops up to 1C discharge rates. Notably, the com-
parison of outcomes at 4C discharge rates underscores
the model’s remarkable capability to even predict per-
formances under such high-discharge scenarios.

4 Conclusion
The model presented here offers a streamlined and pre-
cise approach rooted in the electrochemical principles
governing Li-ion batteries. It introduces a straightfor-
ward yet highly effective method to predict voltage and
State of Charge (SoC) variations by devising an ohmic

resistance model. What’s remarkable is the model’s
speed and accuracy in depicting battery behavior.

By relying solely on algebraic equations, this model
achieves a remarkable feat—it accurately forecasts Li-
ion battery discharge behavior. While seemingly simple
in its approach, this model carries substantial engineer-
ing significance, particularly for initial battery design
and other practical applications. Its efficacy becomes
evident when compared against experimental data and
alternative models, affirming its accuracy and reliabil-
ity.

This model’s ability to rapidly and accurately fore-
cast battery performance stands as a testament to its
engineering utility, making it a valuable tool for diverse
applications in the preliminary design and analysis of
Li-ion batteries.

In terms of accuracy, the results from this model are
incredibly impressive. When the battery is running
at high discharge rates, the difference between what
the model predicts and the actual values is less than
2%. Even when we push the battery to discharge at
an extremely high rate, around 4 times its usual speed
(that’s what we call 4C), the difference between the
model’s predictions and the real numbers is only about
10%. That’s really close, considering how fast the bat-
tery is being used up. It shows that this model is super
reliable in guessing how the battery will behave, espe-
cially when it’s under a lot of strain.

Now, in terms of how quickly this model works, it’s
incredibly fast. It takes just a few milliseconds to do
all its calculations and simulations. That might not
sound like much time, but in the world of monitoring
batteries in real-time or quickly finding problems, those
milliseconds count a lot. Having a model that’s both
so accurate and super quick is a huge bonus for anyone
who needs to keep an eye on batteries and react fast if
anything starts to go wrong.

References
[1] Newman J, Balsara NP. Electrochemical systems.

John Wiley & Sons; 2021.

[2] Fuller TF, Doyle M, Newman J. Simulation
and optimization of the dual lithium ion inser-
tion cell. Journal of the electrochemical society.
1994;141(1):1.

[3] Doyle M, Fuller TF, Newman J. Modeling
of galvanostatic charge and discharge of the
lithium/polymer/insertion cell (vol 140, pg 1526,
1993). Journal of the Electrochemical Society.
2018;165(11):X13-3.



Hydrogen, Fuel Cell & Energy Storage 10(2023) 339-353 353

[4] Doyle M, Newman J, Gozdz AS, Schmutz CN,
Tarascon JM. Comparison of modeling predic-
tions with experimental data from plastic lithium
ion cells. Journal of the Electrochemical Society.
1996;143(6):1890.

[5] Newman J, Tiedemann W. Simulation of Recom-
binant Lead-Acid Batteries. Journal of The Elec-
trochemical Society. 1997;144(9):3081.

[6] Bernardi DM, Carpenter MK. A mathemati-
cal model of the oxygen‐recombination lead‐acid
cell. Journal of The Electrochemical Society.
1995:2631.

[7] Gu H, Nguyen T, White RE. A Mathematical
Model of a Lead-Acid Cell: Discharge, Rest, and
Charge. Journal of The Electrochemical Society.
1987;134(12):2953.

[8] Gu W, Wang C, Weidner JW, Jungst RG, Na-
gasubramanian G. Computational fluid dynam-
ics modeling of a lithium/thionyl chloride battery
with electrolyte flow. Journal of The Electrochem-
ical Society. 2000;147(2):427.

[9] Ledovskikh A, Verbitskiy E, Ayeb A, Notten P.
Modelling of rechargeable NiMH batteries. Jour-
nal of Alloys and Compounds. 2003;356:742-5.

[10] Botte GG, Subramanian VR, White RE. Math-
ematical modeling of secondary lithium batteries.
Electrochimica Acta. 2000;45(15-16):2595-609.

[11] Gu W, Wang CY, Liaw BY. numerical modeling of
coupled electrochemical and transport processes in
lead-acid batteries. Journal of The Electrochemi-
cal Society. 1997;144(6):2053.

[12] Torabi F, Esfahanian V. Study of thermal–
runaway in batteries I. Theoretical study and for-
mulation. Journal of The Electrochemical Society.
2011;158(8):A850.

[13] Esfahanian V, Torabi F, Afzali R. Engineering
simulation of lead-acid cell characteristics and pro-
cesses in batteries. In: 8th ISAEST Conference,
India; 2006. .

[14] Yaghoubi A, Gheibi S, Torabi F. Numerical Sim-
ulation of Electrochemical Processes in Polymeric
Membrane Fuel Cells. Iranian (Iranica) Journal of
Energy & Environment. 2013;4(2).

[15] Torabi F, Aliakbar A. A single-domain formula-
tion for modeling and simulation of zinc-silver ox-
ide batteries. Journal of the Electrochemical Soci-
ety. 2012;159(12):A1986.

[16] Nejati Amiri M, Torabi F. A computationally effi-
cient model for performance prediction of lithium-
ion batteries. Sustainable Energy Technologies
and Assessments. 2021;43:100938.

[17] Torabi F, Ahmadi P. Simulation of battery sys-
tems: Fundamentals and applications. Academic
Press; 2019.

[18] Gu W, Wang CY. Thermal and electrochemical
coupled modeling of a lithium-ion cell. In: Pro-
ceedings of the ECS. vol. 99; 2000. p. 748-62.

[19] Berndt D. Maintenance-free batteries. Power En-
gineering Journal. 1998:107.

[20] Botte GG, Johnson BA, White RE. Influence of
some design variables on the thermal behavior of
a lithium-ion cell. Journal of the Electrochemical
Society. 1999;146(3):914.


	Introduction
	Mathematical Model
	Conservation of chemical species
	Conservation of electrical charge
	Cell Voltage
	State of charge (SoC)
	Cell Resistance
	Summary of the model

	Results and Discussion
	Simplified formulation
	Case study

	Conclusion

