Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Document Type: Research Paper

Authors

Sharif University of Technology

Abstract

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by shifting the bioanode surface potential boundary conditions. Model validation was performed using experimental results from the MFCs fed with cheese whey wastewater and then it was switched to a supposed microbial electrolysis cell. The effect of applied voltage as well as poising the cathode surface potential on the anode surface potential and microbial population have been acquired. The results show that hydrogen production rate increases at the higher applied voltage and cathode potential, but the influence of cathode potential at the applied voltage of 0.9 V was much more tangible. The MFC was simulated in different pH values to optimize the power generation. The maximum of power output at 100 Ω was obtained in pH 7.5. In addition, the microbial behavior in the biofilm and anolyte was investigated as a strong function of pH. Due to the higher growth rate of electrogens, the optimum pH for the mixed culture of electrogens was the same for the pure culture (pH 7.7), but it is alterd for acetoclstic methanoges.

Keywords

Main Subjects


1.    Rozendal R. A., Hamelers H. V. M., Euverink G. J. W., Metz S. J., Buisman C. J. N., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis", Int. J. Hydrogen Energy 2006, 31: 1632.

2.    Mardanpour M. M., Esfahany M. N., Behzad T. and Sedaqatvand R., "Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment", Biosens. Bioelectron., 2012, 38: 264.

3.    Logan B. E., "Microbial Fuel Cells", Wiley, 2008.

4.    Liu H., Grot S. and Logan B. E., "Electrochemically assisted microbial production of hydrogen from acetate", Environ. Sci. Technol., 2005, 39: 4317.

5.    Wang A., Sun D., Cao G., Wang H., Ren N. and Wu W.M. et al., "Integrated hydrogen production process from cellulose by combining dark fermentation microbial fuel cells and a microbial electrolysis cell", Bioresour. Technol., 2011, 102: 4137.

6.    Cheng S. and Logan B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis", Proc. Natl. Acad. Sci., 2007, 104: 18871.

7.    Farhangi S., Ebrahimi S. and Niasar M., "Commercial materials as cathode for hydrogen production in microbial electrolysis cell", Biotechnol. Lett., 2014, 36: 1987.

8.    Nam J.-Y., Tokash J. C. and Logan B. E., "Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential", Int. J. Hydrogen Energy, 2011, 36: 10550.

9.    Picioreanu C., Head I. M., Katuri K. P., van Loosdrecht M. C. M. and Scott K., "A computational model for biofilm-based microbial fuel cells", Water Res., 2007, 41: 2921.

10.  Picioreanu C., Katuri K. P., Head I. M., Loosdrecht M. C. M. v. and Scott K., "Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion", Water Sci. Technol. 2008, 57.

11.  Picioreanu C., van Loosdrecht M. C. M., Curtis T. P. and  Scott K., "Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance", Bioelectrochemistry 2010, 78: 8.

12.  Pinto R. P., Srinivasan B., Manuel M. F. and Tartakovsky B., "A two-population bio-electrochemical model of a microbial fuel cell", Bioresour. Technol., 2010, 101: 5256.

13.  Kato Marcus A., Torres C. I. and Rittmann B. E., "Conduction-based modeling of the biofilm anode of a microbial fuel cell", Biotechnol. Bioeng., 2007, 98: 1171.

14.  Sedaqatvand R., Nasr Esfahany M., Behzad T., Mohseni M. and Mardanpour M. M., "Parameter estimation and characterization of a single-chamber microbial fuel cell for dairy wastewater treatment", Bioresour. Technol., 2013, 146: 247.

15.  Pinto R. P., Srinivasan B., Escapa A. and Tartakovsky B., "Multi-population model of a microbial electrolysis cell", Environ. Sci. Technol., 2011, 45: 5039.

16.  Usack J. G. and Angenent L. T., "Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1 – Performance and operating limits", Water Reach, in press.

17.  Qiao W., Takayanagi K., Shofie M., Niu Q., Yu H. Q. and Li Y.-Y., "Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance", Bioresour. Technol., 2013, 150: 249.

18.  D.J. Batstone J. K.,  Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., W.T.M. Sanders H. S. and Vavilin V.A., "The IWA Anaerobic Digestion Model No 1 (ADM1)", Water Sci. Technol., 2002, 45: 65.

19.  Wanner O. and Gujer W., "A multispecies biofilm model", Biotechnol. Bioeng., 1986, 28: 314.

20.  Bernardi D. M. and Verbrugge M. W., "Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte", AICHE J., 1991, 37: 1151.

21.  Pinto R. P., Tartakovsky B. and Srinivasan B., "Optimizing energy productivity of microbial electrochemical cells", J. Process Contr., 2012, 22: 1079.

22.  Antonopoulou G., Stamatelatou K., Bebelis S. and Lyberatos G., "Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell", Biochem. Eng. J., 2010, 50: 10.

23.  Zhang L., Zhu X., Li J., Liao Q. and Ye D., "Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances", J. Power Sources 2011, 196: 6029.

24.  Marcus A. K., Torres C. I. and Rittmann B. E., "Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM", Electrochim. Acta, 2010, 55: 6964.

25.  Peng J., Lü Z., Rui J. and Lu Y., "Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil", Appl. Environ. Microbiol. 2008, 74: 2894.

26.  Jung S. and Regan J. M., "Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells", Appl. Environ. Microbiol. 2011, 77: 564.

27.  R. Solera L. I. R., D. Sales., "The evolution of biomass in a two-phase anaerobic treatment process during start-up", Chem. Biochem. Engin. Q., 2002, 16: 25.