The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)

Document Type: Research Paper


1 Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, National University of Malaysia (UKM) , 43600 UKM Bangi, Selangor, Malaysia

2 Institute of Tropical Agriculture, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

3 Centro de Investigacion de Energias Alternativas y Ambiente, Facultad de Ciencias, Escuela Superior Politecnica de Chimborazo, Panamericana Sur Km 1 1/2, Chimborazo EC060155, Ecuador.

4 Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM) , 43600 UKM Bangi, Selangor, Malaysia


Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and production. In the present study, to enhance current and hydrogen production of MEC, the effects of key operational conditions on the MEC performance were extensively investigated. The optimal operating condition for hydrogen production in MECs was determined as: the optimum applied voltage of 1.1 V, anode surface area of 94 (cm2), anode-cathode distance of 1.5 (cm), and a N2/CO2 volume ratio of 4:1. With these optimum conditions, the maximum H2 volume, current density and hydrogen production rate (HPR) of MEC could be reached to 270.09 mL, 314.01 ± 2.81 A/m3, and 4.25 ± 0.55 m3 H2 /m3 d, respectively. The results obtained in this study imply that a systematic investigation of the key operational variables is an effective strategy to maximize the hydrogen production in single-chamber MECs.


Main Subjects

[1] International Energy Agency (IEA). “International Energy Outlook 2014”, Website:
      <>; [last accessed 5.10.2015].
[2] Acar C. and Dincer I., “Comparative assessment of hydrogen production methods from
      renewable and non-renewable sources”, Int J Hydrogen Energy, 2014, 39(1): 1.
[3] Skonieczny M. T. and Yargeau V., “Biohydrogen production from wastewater by
      Clostridium beijerinckii: effect of pH and substrate concentration”,  Int J Hydrogen Energy,
      2009, 34(8): 3288.
[4] Chong M. L., Sabaratnam V., Shirai Y. and Hassan M. A., “Biohydrogen production from
      biomass and industrial wastes by dark fermentation”, Int J Hydrogen Energy, 2009, 34(8):
[5] Zhang Y. and Angelidaki I., “Microbial electrolysis cells turning to be versatile technology:
      Recent advances and future challenges”, Water Res, 2014, 56(1): 11.
[6] Kadier A., Simayi Y., Kalil M. S., Abdeshahian P. and Hamid, A. A., “A review of the
      substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean
      hydrogen gas”,  Renew Energ, 2014, 71: 466.
[7] Pant D., Singh A., Bogaert G. V., Olsen S. I., Nigam P. S., Diels L. and Vanbroekhoven K.,
      “Bioelectrochemical systems (BES) for sustainable energy production and product recovery
      from organic wastes and industrial wastewaters”, RSC Adv, 2012, 2(4): 1248.
[8] Rozendal R. A., Hamelers H. V. M., Euverink G. J. W., Metz S. J. and Buisman C. J. N.,
     “Principle and  perspectives of hydrogen production through biocatalyzed electrolysis”, Int J
      Hydrogen Energy, 2006, 31(12): 1632.
[9] Cheng S. and Logan B. E., “Sustainable and efficient biohydrogen production via
       Electrohydrogenesis”, Proc Natl Acad Sci USA, 2007, 104(47): 18871.
[10] Hu H., Fan Y. and Liu H., “Hydrogen production using single-chamber membrane-free
        microbial electrolysis cells”, Water Res, 2008, 42(15): 4172.
[11] Call D. F. and Logan B.  E., “Hydrogen production in a single chamber microbial
        electrolysis cell (MEC) lacking a membrane”, Environ Sci Technol, 2008, 42(9): 3401.
[12] Liu H., Grot S. and Logan B. E., “Electrochemically assisted production of hydrogen from
        acetate”,  Environ Sci Technol, 2005, 39(11): 4317.
[13] Cheng S. and Logan B. E., “High hydrogen production rate of microbial electrolysis cell
        (MEC) with reduced electrode spacing”, Bioresour Technol, 2011, 102(3): 3571.
[14] Kyazze G., Popov A., Dinsdale R., Esteves S., Hawkes F., Premier G. and Guwy A.,
      “Influence of catholyte pH and temperature on hydrogen production from acetate using a two
      chamber concentric tubular microbial electrolysis cell”, Int J Hydrogen Energy, 2010,
       35(15): 7716.
[15] Ribot-Llobet E., Nam J-Y., Tokash J. C., Guisasola A. and Logan B. E., “Assessment of
        four different cathode materials at different initial pHs using unbuffered catholytes in
        microbial  electrolysis cells”,  Int J Hydrogen Energy, 2013, 38(7): 2951.
[16] Nam J-Y. and Logan B. E., “Optimization of catholyte concentration and anolyte pHs in two
        chamber microbial electrolysis cells”, Int J Hydrogen Energy, 2012, 37(24): 18622.
[17] Wang A., Liu W., Ren N., Zhou J. and Cheng S., “Key factors affecting microbial anode
        potential in a microbial electrolysis cell for H2 production”, Int J Hydrogen Energy, 2010,
        35(24): 13481.
[18] Merrill M. D. and Logan B. E., “Electrolyte effects on hydrogen evolution and solution
        resistance in microbial electrolysis cells”, J Power Sources, 2009, 191(2): 203.
[19] Yossan S., Xiao L., Prasertsan P. and He Z., “Hydrogen production in microbial electrolysis
        cells: choice of catholyte”, Int J Hydrogen Energy, 2013, 38(23): 9619.
[20] Sun R., Xing D., Jia J., Liu Q., Zhou A., Bai S. and Ren N., “Optimization of high-solid
        waste activated sludge concentration for hydrogen production in microbial electrolysis cells
        and microbial community diversity analysis”, Int J Hydrogen Energy, 2014, 39(35): 19912.
[21] Ren L., Siegert M., Ivanov I., Pisciotta J. M. and Logan B. E., “Treatability studies on
       different refinery wastewater samples using high throughput microbial electrolysis cells
       (MECs)”, Bioresour Technol,  2013, 136: 322.
[22] Ren L., Tokash J. C., Regan J. M. and Logan B. E., “Current generation in microbial
        electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA”, Int J
        Hydrogen Energy, 2012, 37(22): 16943.
[23] Logan B. E., Call D., Cheng S., Hamelers H. V. M., Sleutels T. H. J. A. and Jeremiasse A.
        W., “Microbial electrolysis cells for high yield hydrogen gas production from organic
        matter”, Environ Sci Technol, 2008, 42(23): 8630.
[24] Sleutels T. H. J. A., Ter Heijne A., Buisman C. J. N. and Hamelers H. V. M., “Steady-state
        performance and chemical efficiency of microbial electrolysis cells”, Int J Hydrogen Energy,
        2013, 38(18): 7201.
[25] Mao L. and Verwoerd W. S., “Selection of organisms for systems biology study of
        microbial electricity generation: a review”, Int J Energy Environ Eng, 2013, 4: 1.
[26] Di Lorenzo M., Scott K., Curtis T. P. and Head I. M., “Effect of increasing anode surface
        area on the performance of a single chamber microbial fuel cell”, Chem Eng J, 2010, 156(1):
[27] Sadeqzadeh M., Ghasemi M., Ghannadzadeh A., Salamatinia B., Jafary T. and Ramli W.,
        “Mass transfer limitation in different anode electrode surface areas on the performance of
        dual chamber microbial fuel cell”, Am. J Biochem Biotechnol, 2012, 8(4): 320.
[28] Picioreanu C., Head I. M., Katuri K. P., Van Loosdrecht M. C. M. and Scott K., “A
        computational model for biofilm-based microbial fuel cells”, Water Res, 2007, 41(13): 2921.
[29] Cheng S., Liu H. and Logan B. E., “Increased power generation in a continuous flow MFC
         with advective flow through the porous anode and reduced electrode spacing”, Environ Sci
        Technol, 2006, 40(7): 2426.
[30] Gadhe A., Sonawane S. S. and Varma M. N., “Optimization of conditions for hydrogen
        production from complex dairy wastewater by anaerobic sludge using desirability function
        approach”, Int J Hydrogen Energy, 2013, 38(16): 6607.
[31] Hawkes F. R., Dinsdale R., Hawkes D. L. and Hussy I., “Sustainable fermentative hydrogen
        fermentation: challenges for process optimization”, Int J Hydrogen Energy, 2002, 27(11-12):
[32] Junghare M., Subudhi S. and Lal B., “Improvement of hydrogen production under decreased
        partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A:
       Optimization of process parameters”,  Int J Hydrogen Energy, 2012, 37(4): 3160.