Electrochemical Impedance Spectroscopy for Investigation of Different Losses in 4-cells Short Stack with Integrated Humidifier and Water Separator

Document Type: Research Paper

Authors

Malek Ashtar University of Technology, Fuel Cell Technology Research Laboratory

Abstract

Electrochemical impedance spectroscopy (EIS) is a suitable and powerful diagnostic testing method for fuel cells (FCs) since it is non-destructive and provides useful information about FC performance and its components. In this study, for the first time, a 500W cascade type 4 cells stack with integrated humidifier, water separator and internal manifolds was designed, fabricated and tested. The diagnostic test was conducted by EIS. The effects of dead end and open end modes of the stack impedance spectra are studied. The results suggested that ohmic resistance of the single cell decreased with increasing current density due to the greater effect of hydration of membrane. The results of the electrochemical impedance revealed that the gas operating mode had significant impacts on electrochemical impedance of the stack. When the stack was tested on dead end mode, the charge transfer resistance of the stack decreases dramatically and its influences on mass transfer resistances are negligible.

Keywords

Main Subjects


  1. Wang H., Yuan X., Li H., PEM Fuel Cell Diagnostic Tools, CRC Press, 2012.
  2. Yuan X., Sun J.C., Wang H., Zhang J., "AC impedance diagnosis of a 500WPEM fuel cell stack: part II: individual cell impedance", J. Power Sources, 2006, 161: 929.
  3.  Wu J., Zi Yuan X., Wang H., Blanco M., Martin J.J., Zhang J., "Diagnostic tools in PEM fuel cell research: part II: physical/ chemical methods", Int. J. Hydrogen Energy, 2008, 33: 1747.
  4. Wu J., Yuan X.Z., Wang H., Blanco M., Martin J.J., Zhang J., "Diagnostic tools in PEM fuel cell research: part I electrochemical techniques", Int. J. Hydrogen Energy, 2008, 33: 1735.
  5.  Millera M., Bazylaka A., "A review of polymer electrolyte membrane fuel cell stack testing", J. Power Sources, 2011, 196: 601.
  6.  Wagner N., Kaz T., Friedrich K.A., "Investigation of electrode composition of polymer fuel cells by electrochemical impedance spectroscopy", J. Electrochim. Acta, 2008, 53: 7475.
  7.  Easton E.B. and Pickup P.G. "An electrochemical impedance spectroscopy study of fuel cell electrodes", J. Electrochim Acta, 2005, 50: 2469.
  8.  Guo Q., Cayetano M., Tsou Y., DeCastro E., White R., "Study of ionic conductivity profiles of the air cathode of a PEMFC by AC impedance spectroscopy", J. Electrochem Soc, 2003, 150: 1440.
  9. Makharia R., Mathias M., Baker D., "Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy", J. Electrochem. Soc, 2005, 152: 970.
  10.  Easton E., Astill T., Holdcroft S., "Properties of gas diffusion electrodes containing sulfonated poly (ether ether ketone)", J. Electrochem. Soc, 2005, 152: 752.
  11.  O’Rourke J., Ramani M., Arcak M., "Using electrochemical impedance to determine airflow rates", Int. J. Hydrogen Energy, 2008, 33: 4694.
  12.  Roy S. and Orazem M., "Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques", J. Power Sources, 2008, 184: 212.
  13.  Brunetto C, Moschetto A, Tina G. PEM fuel cell testing by electrochemical impedance spectroscopy. Elec Power Syst Res 2009; 79:17-26.
  14.  Wagner N. and Gu¨ lzow E., "Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell", J. Power Sources, 2004, 127: 341.
  15.  Yang D., Ma J., Xu L., Wu M., Wang H., "The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell", J. Electrochim. Acta, 2006, 51: 4039.
  16.  Li H., Zhang J., Fatih K., Wang Z., Tang Y., Shi Z., "Polymer electrolyte membrane fuel cell contamination: testing and diagnosis of toluene-induced cathode degradation", J. Power Sources, 2008, 185: 272.
  17.  Yuan X., Sun J.C., Blanco M., Wang H., Zhang J., Wilkinson D.P., "AC impedance diagnosis of a 500WPEM fuel cell stack: part I: stack impedance", J. Power Sources, 2006, 161: 920.
  18.  Zhu W.H., Payne R.U., Tatarchuk B.J, "PEM stack test and analysis in a power system at operational load via ac impedance", J. Power Sources, 2007, 168: 211.
  19. Giner-Sanz, J.J., Ortega, E.M., Pérez-Herranz, V. Optimization of  the  electrochemical impedance  spectroscopy measurement parameters for PEM  fuel cell spectrum determination, Electrochimica Acta 174 (2015) 1290–1298.
  20. Zhiania, M., Majidi, S., Bruno Silva, V., Gharibi, H. Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses, Energy 97 (2016) 560-567.
  21.  Asghari, S., Ashraf Khorasani, M., Dashti, R. I. Investigation of self-humidified and dead-ended anode proton exchange membrane fuel cell performance using electrochemical impedance spectroscopy, International Journal of Hydrogen Energy, 41 (2016) 12347-12357.
  22.  Barzegari, M., M. Dardel, M., Ramiar, A., Alizadeh, E. An investigation of temperature effect on performance of dead-end cascade H2/O2PEMFC stack with integrated humidifier and separator, International Journal of Hydrogen Energy, 41 (2016) 3136-3146.