A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

Document Type: Research Paper


Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran


In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode materials were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical characterization of the Li-LiNa0.02K0.01FePO4/C and Li-TNAs half-cells and LiNa0.02K0.01FePO4/C-TNAs full-cell configuration was carried out through cyclic voltammetry (CV) and charge/discharge analysis. The operating potential and the first discharge capacity of the full cell were about 1.7 V and 127 mAhg-1 (at 0.5 C), respectively, and stayed stable for up to 100 cycles with limited capacity fading. Therefore, this system (full-cell) is characterized by enhanced electrochemical properties, a high safety level, remarkable environmental compatibility, long life and low cost. The preliminary results in this work suggest that the system may be suitable for using as environmental friendly hybrid, electric vehicles (EVs), and an alternative energy storage system for powering safe and stationary applications.


Main Subjects



[1] Chen W. M., Qie L., Yuan L. X., Xia S. A., Hu X. L., Zhang W. X., Huang Y. H., "Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode", Electrochim. Acta, 2011, 56: 2689.


[2] Hassoun J., Pfanzelt M., Kubiak P., Wohlfahrt-Mehrens M., Scrosati B., "An advanced configuration TiO2/LiFePO4 polymer lithium ion battery", J. Power Sources, 2012, 217: 459.


[3] Reale P., Fernicola A., Scrosati B., "Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes", J. Power Sources, 2009, 194: 182.


[4] Liu Y., Gorgutsa S., Santato C., Skorobogatiy M., "Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles", J. Electrochem. Soc., 2012, 159: A349.


[5] Brutti S., Hassoun J., Scrosati B., Lin C. Y., Wu H., Hsieh H. W., "A high power Sn–C/C–LiFePO4 lithium ion battery", J. Power Sources, 2012, 217: 72.


[6] Hassoun J., Lee D. J., Sun Y. K., Scrosati B., "A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte", Solid State Ionics, 2011, 202: 36.


[7] Choi D., Wang D., Viswanathan V. V., Bae I. T., Wang W., Nie Z., Zhang J. G., Graff G. L., Liu J., Yang Z., Duong T., "Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage", Electrochem. Commun., 2010, 12: 378.


[8] Rui X. H., Jin Y., Feng X. Y., Zhang L. C., Chen C. H., "A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries", J. Power Sources, 2011, 196: 2109.

[9] Wang H. E., Jin J., Cai Y., Xu J. M., Chen D. S., Zheng X. F., Deng Z., Li Y., Bello I., Su B. L., “Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries”, J. Colloid Interface Sci., 2014, 417: 144.


[10] Pan D., Huang H., Wang X., Wang L., Liao H., Li Z., Wu M., “C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors”, J. Mater. Chem. A, 2014, 2: 11454.


[11] Chiu K. F., Lin K. M., Leu H. J., Chen C. L., Lin C. C., “Fabrication and Characterization of Nano-Crystalline TiO2 Thin Film Electrodes for Lithium Ion Batteries”, J. Electrochem. Soc., 2012, 159: A264.


[12] He B. L., Dong B., Li H. L., “Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery”, Electrochem. Commun., 2007, 9: 425.


[13] Zhang X., Aravindan V., Kumar P. S., Liu H., Sundaramurthy J., Ramakrishna S., Madhavi S., “Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate”, Nanoscale, 2013, 5: 5973.


[14] Zhang J., Zhang J., Ren H., Yu L., Wu Z., Zhang Z., “High rate capability and long cycle stability of TiO2−δ–La composite nanotubes as anode material for lithium ion batteries”, J. Alloys Compd., 2014, 609: 178.


[15] Qin G., Zhang H., Wang C., “Ultrasmall TiO2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries”, J. Power Sources, 2014, 272: 491.


[16] Xue L., Wei Z., Li R., Liu J., Huang T., Yu A., “Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries”, J. Mater. Chem., 2011, 21: 3216.


[17] Roy P., Berger S., Schmuki P., “TiO2 Nanotubes: Synthesis and Applications”, Angew. Chem. Int. Ed., 2011, 50: 2904.


[18] Djenizian T., Hanzu I., Knauth P., “Nanostructured negative electrodes based on titania for Li-ion microbatteries”, J. Mater. Chem., 2011, 21: 9925.


[19] Su X., Wu Q., Zhan X., Wu J., Wei S., Guo Z., “Advanced titania nanostructures and composites for lithium ion battery”, J. Mater. Sci., 2012, 47: 2519.


[20] Suresh Kumar P., Aravindan V., Sundaramurthy J., Thavasi V., Mhaisalkar S. G., Ramakrishna S., Madhavi S., “High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode”, RSC Adv., 2012, 2: 7983.


[21] Aravindan V., Sundaramurthy J., Kumar P. S., Shubha N., Ling W. C., Ramakrishna S., Madhavi S., “A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators”, Nanoscale, 2013, 5: 10636.


[22] Game O., Kumari T., Singh U., Aravindan V., Madhavi S., Ogale S. B., “(0 0 1) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4”, Energy Storage Mater., 2016, 3: 106.


[23] Armstrong G., Armstrong A. R., Bruce P. G., Reale P., Scrosati B., “TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte”, Adv. Mater., 2006, 18: 2597.


[24] Prosini P. P., Cento C., Pozio A., “Lithium-ion batteries based on titanium oxide nanotubes and LiFePO4”, J. Solid State Electrochem., 2014, 18: 795.


[25] Madram A. R., Daneshtalab R., Sovizi M. R., “Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries”, RSC Adv., 2016, 6: 101477.


[26] Lee S., Park I. J., Kim D. H., Seong W. M., KimD. W., Han G. S., Kim J. Y., Jung H. S., Hong K. S., “Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion”, Energy & Environ. Sci., 2012, 5: 7989.


[27] Shu Z. X., McMillan R. S., Murray J. J., “Electrochemical Intercalation of Lithium into Graphite”, J. Electrochem. Soc., 1993, 140: 922.