Integration of a Vanadium Redox Flow Battery with a Proton Exchange Membrane Fuel Cell as an Energy Storage System

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 3353-5111, Tehran, Iran

2 Department of Chemical Engineering, Payame Noor University, Tehran, Iran

Abstract

The proton exchange membrane (PEM) fuel cell is a green energy producer which converts chemical energy to electricity in high yield. Alternatively, the vanadium redox flow battery (VRB) is one of the best rechargeable batteries because of its capability to average loads and output power sources. These two systems are modeled by Nernst equation and electrochemical rules. An effective energy generator should be able to operate with a new type of energy storage mechanism which would increase the capacity and stability of the comprehensive system using the proposed integrated system. Therefore, in this presented study a VRB as an energy storage system along with a PEM fuel cell has been modeled for peak shaving purpose. A transient model was created as a novel approach to predict cell operation condition, based on electrochemical equations and the battery equivalent circuit concept. Results showed that charging the VRB for one day with surplus produced electricity from the fuel cell will increase the total delivered power of the integrated system up to 50%.

Keywords

Main Subjects


 

[1]     Farret, F. A., Simoes, M. G., “Integration of alternative sources of energy”, John Wiley & Sons Inc., USA, 2006.

[2]     Ogden, J. M., Vielstich, W., Lamm, A., Gasteiger, H.A., “Handbook of Fuel Cells”, Wiley, USA, 2003.

[3]     Blanchard, J., “Smart Energy Solutions Using Fuel Cells”, Telecommunications Energy Conference (INTELEC), IEEE 33rd International, 09 - 13 Oct, Amsterdam, Netherlands, 2011.

[4]     Park, J., Li, X., “Effect of flow and temperature distribution on the performance of PEM fuel cell”, Journal of Power Sources, 2006, 162:444-459.

[5]     Li, Z., Xi, J., Zhou, H., Wu, Z., Qui, X., Chen, L., “Preparation and characterization of sulfonated poly (ether ether krtone)/poly (vinylidene flouride) blend membrane for vanadium redox flow battery application”, Journal of Power Sources, 2013, 237:132-140.

[6]     Ghadamian, H., Saboohi, Y., “Quantitative analysis of irreversibilities causes voltage drop in fuel cell”, Journal of Electrochemica Acta, 2004, 50:699-704.

[7]     Ghadamian, H., Bakhtary, Kh., Namini, S. S., “An algorithm for optimum design and macro-model development in PEMFC with exergy and cost considerations”, Journal of Power Sources, 2006, 163:87-92.

[8]     Kim, J., Lee, S.M., Srinivasan, S., Chamberlin, C.E., “Modeling of Proton
Exchange Membrane Fuel Cell Performance with an Empirical Equation”, Journal
of Electrochemical Society, 1995, 142:2670-2674.

[9]     Ceraolo, M., Miulli, C., Pozio, A., “Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description”, Journal of Power Sources, 2003, 113:131-144.

[10] Tang, A., Bao, J., Skyllas-Kazacos, M., “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery”, Power Sources, 2011, 196:10737-10747.

[11] Tang, A., Bao, J., Skyllas-Kazacos, M., “Thermal modelling of battery configuration and self -discharge reactions in vanadium redox flow battery”, Power Sources, 2012, 216:489-495.

[12] Skyllas-Kazacos, M., Robbins, R.G., “The All Vanadium Redox Battery”, U.S. Patent No. 849 094, 1986.

[13] Heintz, A., Illenberger, C. H., “Thermodynamics of vanadium redox flow batteries – electrochemical and calorimetric investigations”, Berichte der Bunsengesellschaft f¨ur physikalische Chemie, 1998, 102:1401-1409.

[14] Shah, A.A., Watt-Smith, M.J.,  Walsh, F.C., “A dynamic performance model for redox-flow batteries involving soluble species”, Electrochimica Acta, 2008, 53:8087-8100.

[15] Xiong, B., Zhao, J. , Tseng, K.J. ,Skyllas-Kazacos, M., Lim, T. M., Zhang, Y., “Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery”, Power Sources, 2013, 242:314-324.

[16] Sun, C., Tang, Z., Belcher, C., Zawodzinski, T. A., Fujimoto, C., “Evaluation of Diels–Alder poly (phenylene) anion exchange membranes in all-vanadium redox flow batteries”,  Electrochemistry Communications, 2014, 43:63-66.

[17] Schmal, D., Van Erkel, J., Van Dnin, P. J., “Mass transfer at carbon fibre electrodes”, Journal of Applied Electrochemistry, 1986, 16:422-430.

[18] You, D., Zhang, H., Sun, C., Ma, X., “Simulation of the self-discharge process in vanadium redox flow battery”, Journal of Power Sources, 2011, 196:1578-1585.

[19] Jiang, R., Derynchu, Z., “Stack design and performance of polymer electrolyte membrane fuel cell”, Journal of Power Sources, 2002, 93:25-31.

[20] Mohamed, M. R., Ahmad, H.,  Abu Seman, M. N.  S. Razali,  Najib, M. S., “Electrical circuit model of a vanadium redox flow battery using extended Kalman filter”, Journal of Power Sources, 2013, 239:284-293.

[21] Skyllas-Kazacos, M., Kazacos, M., “State of charge monitoring methods for vanadium redox flow battery control”, Journal of Power Sources, 2011, 196:8822-8827.

[22] Ozgoli, H. A., Elyasi, S., “Hydrodynamic and electrochemical modeling of vanadium redox flow battery”, Mechanics & Industry, 2015, 16:1.

[23] Ozgoli, H. A., Elyasi, S., “A transient model of vanadium redox flow battery”, Mechanics & Industry, 2016, 17:1-13.

[24] Andrea, E., Ma˜nana, M., Ortiz, A., Renedo, C., Egu´─▒luz, L., P´erez, S., Delgado, F., “A simplified electrical model of small PEM fuel cell”, Renewable Energy & Power Quality Journal, 2006, 1:281-284.

[25] You, D., Zhang, H., Chen, J., “A simple model for the vanadium redox battery”, Electrochimica Acta, 2009, 54:6827-6836.

[26] Al-Fetlawi, H., Shah A. A., Walsh, F. C., “Non-isothermal modelling of the all-vanadium redox flow battery”, Electrochim Acta, 2009, 55:78-89.

[27] Skyllas-Kazacos, M., Kazacos, M., “State of charge monitoring methods for vanadium redox flow battery control”, Journal of Power Sources, 2011, 196:8822-8827.

[28] Skyllas-Kazacos, M., Chakrabarti, M. H.S. Hajimolana, A. , Mjalli, F. S.,  Saleem, M., “Progress in Flow Battery Research and Development”, Journal of the Electrochemical Society, 2011, 158:1-25.

[29] Corcuera, S., Skyllas-Kazacos, M., “State-Of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery”, European Chemical Bulletin, 2012, 1:511-519.

[30] Sukkar, T., Skyllas-Kazacos, M., “Water transfer behaviour across cation exchange membranes in the vanadium redox battery”, Journal of Membrane Science, 2003, 222:235-247.

[31] Tomadakis, M., Robertson, T. J., “Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results” Journal of Composite Materials, 2005, 39:163-188.

[32] Chen, S. X., Gooi, H. B., Xia, N., “Modelling of lithium-ion battery for online energy management systems”, Electrical Systems in Transportation, 2012, 2:202-210.

[33] Binyu, X., Zhao, J., Zhongbao, W., Chenda, Z., “State of Charge Estimation of an All-Vanadium Redox Flow Battery Based on a Thermal-Dependent Model”, Power and Energy Engineering Conference (APPEEC), 2013:1-6.

[34] Wen, Y., Zhang, H., Qian, P., Zhao, P., Zhou, H., Yi, B., “Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery”,  Acta Physico-Chimica Sinica, 2006, 22:403-408.

[35] Li, Z., Xi, J., Zhou, H., Wu, Z., Qui, X., Chen, L., “Preparation and characterization of sulfonated poly (ether ether krtone)/poly (vinylidene flouride) blend membrane for vanadium redox flow battery application”, Journal of Power Sources, 2013, 237:132-140.

[36] Guvelioglu, G. H., Stenger, H. G., “Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 2005, 147:95-106.

[37] Barnes, F. S., “Cell membrane temperature rate sensitivity predicted from nerst equation”, bio electro magnetics, 1984, 5:113-115.

[38] Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R., Kumbur, E. C., “A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane”, Journal of The Electrochemical Society, 2012, 159:A1446-A1459.

[39] Coppo, M., Siegel, N. P., Von Spakovsky, M. R., “On the influence of temperature on PEM fuel cell operation” Journal of Power Sources, 2006, 159:560-569.

[40] Park, J., Li, X., “Effect of flow and temperature distribution on the performance of PEM fuel cell”, Journal of Power Sources, 2006, 162:444-459.