Green in-situ Fabrication of PtW/Poly Ethylen Dioxy Thiophene/Graphene Nanoplates/Gas Diffusion Layer (PtW/ PEDOT /GNP/GDL) Electrode and its Electrocatalytic Property for Direct Methanol Fuel Cells Application

Document Type: Research Paper

Author

Department of Chemical Engineering, Urmia University, Iran

Abstract

 
In this study nanocomposite films of PtW nanoparticles deposited on a poly ethylen dioxy thiophene/graphene nanoplates/gas diffusion layer (PEDOT/GNP/GDL) electrode are fabricated via an electrochemical route involving a series of electrochemical process. GNPs are in situ reduced on carbon paper covered with 3, 4 ethylen dioxy thiophene during the in situ polymerization of EDOT. PtW nanoparticles 18.57nm in average size are prepared by electrodeposition on the surface of PEDOT/GNP/GDL. Field emission scanning electronic microscopy (FESEM) images showed spongy aggregates of PEDOT densely cover the surface and edges of the GNP layers, implying the existence of a strong interaction between PEDOT and GNP. Based on electrochemical characterization, it was found that the as prepared electrode exhibited comparable activity for the methanol oxidation (MEOH) reaction with respect to commercial Pt/C/GDL based on the traditional sprayed method. A significant reduction in the potential of the CO electro-oxidation peak from 0.92V for Pt/C to 0.75V for the PtW/PEDOT/GNP/GDL electrode indicates that an increase in the activity for CO electro-oxidation is achieved by replacing Pt with PtW. This may be attributed to structural changes caused by alloying and the increased conductivity and high specific surface area of PEDOT and GNPs catalyst support, respectively. CV scanning results showed that the PtW/PEDOT/GNP/GDL electrode has greater stability than the Pt/C/GDL electrode.

Keywords

Main Subjects


[1] Costamagna P. and Srinivasan S., "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects",  J. Power Sources, 2001,102: 253.

[2] Carrette L., Friedrich K. and Stimming U., "Fuel cells–fundamentals and applications",  Fuel cells, 2001,1: 5.

[3] Wang J., Wasmus S. and Savinell R., "Evaluation of Ethanol, 1‐Propanol, and 2‐Propanol in a Direct Oxidation Polymer‐Electrolyte Fuel Cell A Real‐Time Mass Spectrometry Study",  J. Electrochem. Soc., 1995,142: 4218.

[4] Schmidt V.M., Ianniello R., Pastor E. and González S., "Electrochemical reactivity of ethanol on porous Pt and PtRu: Oxidation/reduction reactions in 1 M HClO4",  J. Phys. Chem., 1996,100: 17901.

[5] Arico A., Srinivasan S. and Antonucci V., "DMFCs: from fundamental aspects to technology development",  Fuel cells, 2001,1: 133.

[6] Vigier F., Coutanceau C., Perrard A., Belgsir E. and Lamy C., "Development of anode catalysts for a direct ethanol fuel cell",  J. Appl. Electrochem., 2004,34: 439.

[7] Stamenkovic V.R., Fowler B., Mun B.S., Wang G., Ross P.N., Lucas C.A. and Marković N.M., "Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability",  science, 2007,315: 493.

[8] Zhang J., Sasaki K., Sutter E. and Adzic R., "Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters",  Science, 2007,315: 220.

[9] Zhang J., Vukmirovic M.B., Xu Y., Mavrikakis M. and Adzic R.R., "Controlling the Catalytic Activity of Platinum‐Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates",  Angew. Chem. Int. Ed., 2005,44: 2132.

[10] Chen Z., Waje M., Li W. and Yan Y., "Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen‐Reduction Reactions",  Angew. Chem. Int. Ed., 2007,46: 4060.

[11] Tian N., Zhou Z.-Y., Sun S.-G., Ding Y. and Wang Z.L., "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity",  science, 2007,316: 732.

[12] Gong K., Du F., Xia Z., Durstock M. and Dai L., "Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction",  science, 2009,323: 760.

[13] Lim B., Jiang M., Camargo P.H., Cho E.C., Tao J., Lu X., Zhu Y. and Xia Y., "Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction",  science, 2009,324: 1302.

[14] He T. and Kreidler E., "Combinatorial screening of PtTiMe ternary alloys for oxygen electroreduction",  Phys. Chem. Chem. Phys, 2008,10: 3731.

[15] Moore J.T., Chu D., Jiang R., Deluga G.A. and Lukehart C., "Synthesis and Characterization of Os and Pt− Os/Carbon Nanocomposites and their Relative Performance as Methanol Electrooxidation Catalysts",  Chem. Mater., 2003,15: 1119.

[16] Park K.-W., Choi J.-H., Kwon B.-K., Lee S.-A., Sung Y.-E., Ha H.-Y., Hong S.-A., Kim H. and Wieckowski A., "Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation",  J. Phys. Chem. B, 2002,106: 1869.

[17] Liu Z., Lee J.Y., Han M., Chen W. and Gan L.M., "Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions",  J. Mater. Chem., 2002,12: 2453.

[18] Boxall D.L., Kenik E.A. and Lukehart C., "Synthesis of PtSn/carbon nanocomposites using trans-PtCl (PEt3) 2 (SnCl3) as the source of metal",  Chem. Mater., 2002,14: 1715.

[19] Steigerwalt E.S., Deluga G.A. and Lukehart C., "Pt− Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance",  J. Phys. Chem. B, 2002,106: 760.

[20] Lee S.-A., Park K.-W., Choi J.-H., Kwon B.-K. and Sung Y.-E., "Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells",  J. Electrochem. Soc., 2002,149: A1299.

[21] Götz M. and Wendt H., "Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas",  Electrochim. Acta, 1998,43: 3637.

[22] Zhou W., Zhou Z., Song S., Li W., Sun G., Tsiakaras P. and Xin Q., "Pt based anode catalysts for direct ethanol fuel cells",  Appl.Catal.B., 2003,46: 273.

[23] Goetz M. and Wendt H., "Composite electrocatalysts for anodic methanol and methanol-reformate oxidation",  J. Appl. Electrochem., 2001,31: 811.

[24] Christian J.B., Smith S.P., Whittingham M.S. and Abruña H.D., "Tungsten based electrocatalyst for fuel cell applications",  Electrochem. Commun., 2007,9: 2128.

[25] Trogadas P. and Ramani V., "Pt∕ C–WO3 Electrocatalysts for Degradation Mitigation in Polymer Electrolyte Fuel Cells",  J. Electrochem. Soc., 2008,155: B696.

[26] Inzelt G., Pineri M., Schultze J. and Vorotyntsev M., "Electron and proton conducting polymers: recent developments and prospects",  Electrochim. Acta, 2000,45: 2403.

[27] Inzelt G., "Conducting polymers: a new era in electrochemistry", Springer Science & Business Media. 2012,

[28] Kirchmeyer S., Elschner A., Reuter K., Lovenich W. and Merker U., "PEDOT as a conductive polymer: principles and applications", CRC Press New York, 2010.

[29] Heywang G. and Jonas F., "Poly (alkylenedioxythiophene) s—new, very stable conducting polymers",  Adv. Mater., 1992,4: 116.

[30] Tsakova V., "How to affect number, size, and location of metal particles deposited in conducting polymer layers",  J. Solid State Electrochem., 2008,12: 1421.

[31] Groenendaal L., Jonas F., Freitag D., Pielartzik H. and Reynolds J.R., "poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future",  Adv. Mater., 2000,12: 481.

[32] Chen J., Jia C. and Wan Z., "Novel hybrid nanocomposite based on poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor",  Synth. Met., 2014,189: 69.

[33] Xu Y., Wang Y., Liang J., Huang Y., Ma Y., Wan X. and Chen Y., "A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency",  Nano Research, 2009,2: 343.

[34] Ying Wang C.-e.Z., Dong Sun,Jian-Rong Zhang and Jun-Jie Zhu, "A Graphene /Pol(3,4-ethylenedioxythiophene) Hybrid as a Anode for High –Performance Microbial Fuel Cells",  chem plus chem, 2013,78: 823.

[35] Trang L.K.H., Thanh Tung T., Young Kim T., Yang W.S., Kim H. and Suh K.S., "Preparation and characterization of graphene composites with conducting polymers",  Polymer International, 2012,61: 93.

[36] Lota K., Khomenko V. and Frackowiak E., "Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites",  J. Phys. Chem. Solids, 2004,65: 295.

[37] Chen L., Yuan C., Dou H., Gao B., Chen S. and Zhang X., "Synthesis and electrochemical capacitance of core–shell poly (3, 4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites",  Electrochim. Acta, 2009,54: 2335.

[38] Chu C.-Y., Tsai J.-T. and Sun C.-L., "Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications",  Int. J. Hydrogen Energy, 2012,37: 13880.

[39] Yaldagard M., Seghatoleslami N. and Jahanshahi M., "Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell",  Appl. Surf. Sci., 2014,315: 222.

[40] Patra S. and Munichandraiah N., "Electrooxidation of methanol on Pt-modified conductive polymer PEDOT",  Langmuir, 2008,25: 1732.

[41] Sakmeche N., Aeiyach S., Aaron J.-J., Jouini M., Lacroix J.C. and Lacaze P.-C., "Improvement of the electrosynthesis and physicochemical properties of poly (3, 4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium",  Langmuir, 1999,15: 2566.

[42] Kudoh Y., Akami K. and Matsuya Y., "Chemical polymerization of 3, 4-ethylenedioxythiophene using an aqueous medium containing an anionic surfactant",  Synth. Met., 1998,98: 65.

[43] Bazzaoui E., Aeiyach S. and Lacaze P., "Electropolymerization of bithiophene on Pt and Fe electrodes in an aqueous sodium dodecylsulfate (SDS) micellar medium",  Synth. Met., 1996,83: 159.

[44] Hummers Jr W.S. and Offeman R.E., "Preparation of graphitic oxide",  J.Am. Chem. Soc., 1958,80: 1339.

[45] Wang G., Shen X., Wang B., Yao J. and Park J., "Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets",  Carbon, 2009,47: 1359.

[46] Schrebler R., Grez P., Cury P., Veas C., Merino M., Gómez H., Cordova R. and Del Valle M., "Nucleation and growth mechanisms of poly (thiophene) Part 1. Effect of electrolyte and monomer concentration in dichloromethane",  J. Electroanal. Chem., 1997,430: 77.

[47] Randriamahazaka H., Noel V. and Chevrot C., "Nucleation and growth of poly (3, 4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions",  J. Electroanal. Chem., 1999,472: 103.

[48] Mo D., Zhou W., Ma X., Xu J., Zhu D. and Lu B., "Electrochemical synthesis and capacitance properties of a novel poly (3, 4-ethylenedioxythiophene bis-substituted bithiophene) electrode material",  Electrochim. Acta, 2014,132: 67.

[49] Conway B.E., "Electrochemical supercapacitors: scientific fundamentals and technological applications", Springer Science & Business Media. 2013,

[50] Si P., Ding S., Lou X.-W.D. and Kim D.-H., "An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors",  Rsc Advances, 2011,1: 1271.

[51] Han M.G. and Foulger S.H., "1-Dimensional structures of poly (3, 4-ethylenedioxythiophene)(PEDOT): a chemical route to tubes, rods, thimbles, and belts",  Chem. Commun., 2005: 3092.

[52] Nie G., Qu L., Xu J. and Zhang S., "Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3, 4-ethylenedioxythiophene",  Electrochim. Acta, 2008,53: 8351.

[53] Zhao-yang Z., Yi-jie T., Xiao-qian X., Yong-jiang Z., Hai-feng C. and Wen-wei Z., "Electrosynthesises and characterizations of copolymers based on thiophene and 3, 4-ethylenedioxythiophene in boron trifluoride diethyl etherate",  Synth. Met., 2012,162: 2176.

[54] Ma Y., Zhao F. and Zeng B., "Electrodeposition of poly (3, 4-ethylenedioxythiophene) on a stainless steel wire for solid phase microextraction and GC determination of some esters with high boiling points",  Talanta, 2013,104: 27.

[55] Sarac A., Sönmez G. and Cebeci F., "Electrochemical synthesis and structural studies of polypyrroles, poly (3, 4-ethylene-dioxythiophene) s and copolymers of pyrrole and 3, 4-ethylenedioxythiophene on carbon fibre microelectrodes",  J. Appl. Electrochem., 2003,33: 295.

[56] Lee C., Wei X., Kysar J.W. and Hone J., "Measurement of the elastic properties and intrinsic strength of monolayer graphene",  science, 2008,321: 385.

[57] Kvarnström C., Neugebauer H., Blomquist S., Ahonen H., Kankare J. and Ivaska A., "In situ spectroelectrochemical characterization of poly (3, 4-ethylenedioxythiophene)",  Electrochim. Acta, 1999,44: 2739.

[58] Wang X. and Wong K., "Effects of a base coating used for electropolymerization of poly (3, 4-ethylenedioxythiophene) on indium tin oxide electrode",  Thin Solid Films, 2006,515: 1573.

[59] Ouyang J., Chu C.W., Chen F.C., Xu Q. and Yang Y., "High‐conductivity poly (3, 4‐ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices",  Adv. Funct. Mater., 2005,15: 203.

[60] Beard B.C. and Ross P.N., "The Structure and Activity of Pt‐Co Alloys as Oxygen Reduction Electrocatalysts",  J. Electrochem. Soc., 1990,137: 3368.

[61] Trasatti S. and Petrii O., "Real surface area measurements in electrochemistry",  Pure Appl. Chem., 1991,63: 711.

[62] Beden B., Lamy C., De Tacconi N. and Arvia A., "The electrooxidation of CO: a test reaction in electrocatalysis",  Electrochim. Acta, 1990,35: 691.

[63] Huang Q., Yang H., Tang Y., Lu T. and Akins D.L., "Carbon-supported Pt–Co alloy nanoparticles for oxygen reduction reaction",  Electrochem. Commun., 2006,8: 1220.

[64] Cao L., Scheiba F., Roth C., Schweiger F., Cremers C., Stimming U., Fuess H., Chen L., Zhu W. and Qiu X., "Novel Nanocomposite Pt/RuO2⋅ x H2O/Carbon Nanotube Catalysts for Direct Methanol Fuel Cells",  Angew. Chem. Int. Ed., 2006,45: 5315.

[65] Cui G., Zhi L., Thomas A., Kolb U., Lieberwirth I. and Müllen K., "One‐Dimensional Porous Carbon/Platinum Composites for Nanoscale Electrodes",  Angewandte Chemie, 2007,119: 3534.

[66] Honda K., Yoshimura M., Rao T.N., Tryk D., Fujishima A., Yasui K., Sakamoto Y., Nishio K. and Masuda H., "Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes",  J. Electroanal. Chem., 2001,514: 35.

[67] Yaldagard M., Jahanshahi M. and Seghatoleslami N., "Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC",  Appl. Surf. Sci., 2014,317: 496.