Silica membrane performance for hydrogen separation from methanol steam reforming products: Assessment of different multistage membrane schemes

Document Type: Research Paper


1 Chemical Engineering Department, Faculty of Engineering, Urmia University

2 Chemical Engineering Faculty, Urmia University of Technology

3 Institute on Membrane Technology of the Italian National Research Council (CNR-ITM), Via P. Bucci Cubo 17/C c/o University of Calabria, Rende (CS) – 87046, Italy


The aim of this work is a theoretical study of multistage silica membrane configurations for hydrogen purification by methanol steam reforming (MSR) products.  Four membrane schemes including single permeator, CMC (continuous membrane column), ISMC ("in series" membrane cascade), and CRC (countercurrent recycle membrane cascade) were considered for this purpose. The modeling results showed that silica membranes have a high potential for high purity (more than 99.9%) hydrogen production. The lowest amounts of compressor duty and the required total membrane area were considered as the objective functions to select the optimal design and amount of hydrogen purification.  A comparison of our simulation results of the different multistage membrane schemes showed the CRC configuration was more efficient than the other configurations. The modeling results show that that increasing the retentate side pressure from 2 to 5 bar reduced the total silica membrane area for the CRC scheme by almost 13 times (30.67 and 2.37 cm2 silica membrane area for a retentate side pressure of 2 and 5 bar, respectively).


Main Subjects

[1] McLellan B., Shoko E., Dicks A. and da Costa J.D., "Hydrogen production and utilisation opportunities for Australia", International  Journal of  Hydrogen Energy, 2005, 30: 669.

[2] Appleby A. and Foulkes F., Fuel cell handbook, Van Nostrand Reinhold, New York, 1989.

[3] Trimm D.L. and Önsan Z.I., "Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles", Catalysis Reviews, 2001,43: 31.

 [4] Ghenciu A.F., "Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems", Current opinion in solid state and materials science, 2002, 6: 389.

[5] Peppley B.A., Amphlett J.C., Kearns L.M. and Mann R.F., "Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network", Applied Catalysis A: General, 1999, 179: 21.

[6] Peppley B.A., Amphlett J.C., Kearns L.M. and Mann R.F., "Methanol–steam reforming on Cu/ZnO/Al2O3catalysts. Part 2. A comprehensive kinetic model", Applied Catalysis A: General, 1999, 179: 31.

[7] Baker R.W., Membrane technology and applications, England: John Wiley and Sons, 2007.

[8] Nunes S.P. and Peinemann K.V., Membrane technology, Wiley Online Library, 2001.

[9]  Sznejer G.A., Efremenko I. and Sheintuch M., "Carbon membranes for high temperature gas separations: experiment and theory", AIChE journal, 2004, 50: 596.

[10]  Lee D.W., Park S.J., Yu C.Y., Ihm S.K., and Lee K.H., "Novel synthesis of a porous stainless steel-supported Knudsen membrane with remarkably high permeability", Journal of Membrane Science, 2007, 302: 265.

[11]  Boucif N., Majumdar S. and Sirkar K.K., "Seriessolutions for a gas permeator with countercurrent and cocurrent flow", Industrial & engineering chemistry fundamentals, 1984, 23: 470.

[12] Shindo Y., Hakuta T., Yoshitome H. and Inoue H., "Calculation methods for multicomponent gas separation by permeation", Separation Science and Technology, 1985, 20: 445.

[13] Aghaeinejad‐Meybodi A., Ghasemzadeh K., Babaluo A.A., Morrone P. and Basile A., "Modeling study of silica membrane performance for hydrogen separation", Asia‐Pacific Journal of Chemical Engineering, 2015,10: 781.

[14] Aghaeinejad-Meybodi A., Babaluo A., Shafiei S. and Ghasemzadeh K., "Letter to the Editor on “Approximate solutions for gas permeator separating binary mixtures”[J. Membr. Sci. 66 (1992) 103–118]", Journal of Membrane Science, 2014, 454:109.

[15]  Kaldis S., Kapantaidakis G. and Sakellaropoulos G., "Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation—hydrogen recovery from refinery gases", Journal of Membrane Sience, 2006, 173: 61.

[16] Kaldis S., Kapantaidakis G., Papadopoulos T. and Sakellaropoulos G., "Simulation of binary gas separation in hollow fiber asymmetric membranes by orthogonal collocation", Journal of membrane science, 1998, 142: 43.

[17]  Avgidou M., Kaldis S. and Sakellaropoulos G., "Membrane cascade schemes for the separation of LPG olefins and paraffins", Journal of membrane science, 2004, 233: 21.

[18]  Pan C.Y. and  Habgood H., "Gas separation by permeation Part I. Calculation methods and parametric analysis", The Canadian journal of Chemical Engineering, 1978, 56: 197.

[19] Stern S., Perrin J. and Naimon E., "Recycle and multimembrane permeators for gas separations", Journal of membrane science, 1984, 20: 25.

[20]  Coroneo M., Montante G. and Paglianti A., "Numerical and experimental fluid-dynamic analysis to improve the mass transfer performances of Pd− Ag membrane modules for hydrogen purification", Industrial & Engineering Chemistry Research, 2010, 49: 9300.

[21] Abdel-Jawad M., Gopalakrishnan S., Duke M., Macrossan M., Schneider P.S. and da Costa J.D., "Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes", Journal of membrane science, 2007, 299: 229.

[22]  Ghidossi R., Veyret D. and Moulin P., "Computational fluid dynamics applied to membranes: State of the art and opportunities", Chemical Engineering and Processing: Process Intensification, 2006, 45: 437.

[23] Ji G., Wang G., Hooman K., Bhatia S. and da Costa J.C.D., "Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures", Chemical Engineering  Journal, 2013, 218: 394.

[24] Liu L., Wang D.K., Martens D.L., Smart S. and da Costa J.C.D., "Binary gas mixture and hydrothermal stability investigation of cobalt silica membranes", Journal of Membrane Science, 2015, 493: 470.

[25] Aghaeinejad-Meybodi A., Ghasemzadeh K., Babaluo A. and Basile A., "Theoretical analysis of butane isomers separation using various membrane process configurations", International Journal of Membrane Science and Technology, 2015, 2: 45.

[26]  Ghasemzadeh K., Andalib E. and Basile A., "Evaluation of dense Pd–Ag membrane reactor performance during methanol steam reforming in comparison with autothermal reforming using CFD analysis", International  Journal  of Hydrogen Energy, 2016, 41: 8745.

[27] Ghasemzadeh K., Andalib E. and Basile A., "Modelling Study of Palladium Membrane Reactor Performance during Methan Steam Reforming using CFD Method", Chemical Product and Process Modeling, 2016, 11:17

[28]  Ghasemzadeh K., Jafari M. and Babalou A.A., "Performance investigation of membrane process in natural gas sweeting by membrane process: Modeling study", Chemical Product and Process Modeling, 2016, 11: 23.

[29]  Ghasemzadeh K., Morrone P., Iulianelli A., Liguori S., Babaluo A. and Basile A., H2 production in silica membrane reactor via methanol steam reforming: Modeling and HAZOP analysis", International  Journal  of Hydrogen Energy, 2013, 38:10315.

[30] Ghasemzadeh K., Morrone P., Liguori S., Babaluo A. and Basile A., "Evaluation of silica membrane reactor performance for hydrogen production via methanol steam reforming: modeling study", International  Journal  of Hydrogen Energy, 2013, 38: 16698.

[31]  Ghasemzadeh K., Zeynali R., Ahmadnejad F., Babalou A. and Basile A., "Investigation of Palladium Membrane Reactor Performance during Ethanol Steam Reforming using CFD Method", Chemical Product and Process Modeling, 2016, 11: 51.

[32] Ghasemzadeh K., Zeynali R. and Basile A., "Theoretical study of hydrogen production using inorganic membrane reactors during WGS reaction", International Journal of Hydrogen Energy, 2016, 41: 8696.

[33]  Ghasemzadeh K.,  Preparation  of  nanostructure  silica  membranes  and  their performance  in  membrane  reactors  for  hydrogen  production  via  methanol  steam reforming  process,  PhD  thesis,  Sahand  University  of  Technology,  Tabriz,  Iran, 2013.