Synthesis and electrochemical characterization of Graphene-Polyallylamine Nanocomposites as a New Supports of Pt Catalyst for Direct Methanol Fuel Cell Application

Document Type: Research Paper

Author

Department of Chemical Engineering, Urmia University, Iran

10.22104/ijhfc.2020.3794.1195

Abstract

In this research, nanocomposites of Platinum Graphene-Polyallylamine (Pt/PAA/GNP) were developed to increase the methanol electro-oxidation activity and stability of commercial Pt/C electrocatalyst. After the synthesis process, graphene oxide was functionalized with Polyallylamine via the cross linking approach, then Pt as a catalyst was dispersed on the as prepared support by a novel process, which is a polyol synthesis method assisted by microwaves. X-ray diffraction (XRD) results showed that Pt particles, with a mean particle size of about 6.17 , were dispersed on the support. FESEM images showed that the Pt nanoparticles were successfully dispersed on the functionalized graphene nanoplates. Based on the electrochemical properties characterized by cyclic voltammetry (CV), including CO stripping measurements, it was found that the prepared Pt/PAA/GNP electrocatalyst exhibited a comparable activity for methanol oxidation reaction with respect to the commercial one. A significant reduction in the potential of the CO electro-oxidation peak from 0.93V for the Pt/C to 0.89 V for the Pt/PAA/GNP electrocatalyst indicates that there was a significant increase in the CO electro-oxidation activity, which is achieved by replacing the voulcan. Also, the as prepared Pt/PAA/GNP electrocatalyst exhibits high catalytic activity for the MOR in terms of electrochemical surface with respect to Pt/C (40.53 vs 17.61 m2/mgPt ), which may be attributed to structural changes caused by the high specific surface area of the PAA modified graphene nanoplates catalyst support. Moreover, chronoamerometry results showed that in the presence of methanol, the Pt/PAA/GNP electrocatalyst still maintains a higher current density than Pt/C.

Keywords

Main Subjects


 

[1] Lamy C., Lima A., LeRhun V., Delime F., Coutanceau C. and Léger J.-M., "Recent advances in the development of direct alcohol fuel cells (DAFC)",  J. Power Sources, 2002,105: 283.

 

[2] Zainoodin A., Kamarudin S.K. and Daud W.R.W., "Electrode in direct methanol fuel cells",  Int. J. Hydrogen Energy, 2010,35: 4606.

 

[3] Evarts S.E., Kendrick I., Wallstrom B.L., Mion T., Abedi M., Dimakis N. and Smotkin E.S., "Ensemble site requirements for oxidative adsorption of methanol and ethanol on Pt membrane electrode assemblies",  ACS Catal., 2012,2: 701.

 

[4] Jeon M.K., Lee K.R., Lee W.S., Daimon H., Nakahara A. and Woo S.I., "Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction",  J. Power Sources, 2008,185: 927.

 

[5] Arico A., Srinivasan S. and Antonucci V., "DMFCs: from fundamental aspects to technology development",  Fuel cells, 2001,1: 133.

 

[6] Vigier F., Coutanceau C., Perrard A., Belgsir E. andLamy C., "Development of anode catalysts for a direct ethanol fuel cell",  J. Appl. Electrochem., 2004,34: 439.

 

[7] Qiu H. and Zou F., "Nanoporous PtCo surface alloy architecture with enhanced properties for methanol electrooxidation",  ACS appl. mater. interfaces, 2012,4: 1404.

 

[8] Salgado J.R.C., Antolini E. and Gonzalez E.R., "Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells",  Applied Catalysis B: Environmental, 2005,57: 283.

 

[9] Bong S., Kim Y.-R., Kim I., Woo S., Uhm S., Lee J. and Kim H., "Graphene supported electrocatalysts for methanol oxidation",  Electrochem. Commun., 2010,12: 129.

 

[10] Li Y., Gao W., Ci L., Wang C. and Ajayan P.M., "Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation",  Carbon, 2010,48: 1124.

 

[11] Dong L., Gari R.R.S., Li Z., Craig M.M. and Hou S., "Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation",  Carbon, 2010,48: 781.

 

[12] Matsumoto T., Komatsu T., Arai K., Yamazaki T., Kijima M., Shimizu H., Takasawa Y. and Nakamura J., "Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes",  Chem. Commun., 2004: 840.

 

[13] Yoo E., Okada T., Kizuka T. and Nakamura J., "Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells",  J. Power Sources, 2008,180: 221.

 

[14] Liao S., Holmes K.-A., Tsaprailis H. and Birss V.I., "High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol",  J.Am. Chem. Soc., 2006,128: 3504.

 

[15] Novoselov K.S., Geim A.K., Morozov S., Jiang D., Katsnelson M.I., Grigorieva I., Dubonos S., Firsov and AA, "Two-dimensional gas of massless Dirac fermions in graphene",  Nature, 2005,438: 197.

 

[16] Zhang Y., Tan Y.-W., Stormer H.L. and Kim P., "Experimental observation of the quantum Hall effect and Berry's phase in graphene",  Nature, 2005,438: 201.

 

[17] A.K. Geim K.S.N., "The rise of graphene",  Nat. Mater, 2007,6: 183.

[18] Huang H., Chen H., Sun D. and Wang X., "Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells",  J. Power Sources, 2012,204: 46.

 

[19] Wang L., Tian C., Wang H., Ma Y., Wang B. and Fu H., "Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization",  J.Physical chem.C, 2010,114: 8727.

 

[20] Li Y., Tang L. and Li J., "Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites",  Electrochem. Commun., 2009,11: 846.

 

[21] Luo B., Xu S., Yan X. and Xue Q., "Graphene nanosheets supported hollow Pt&CoSn (OH) 6 nanospheres as a catalyst for methanol electro-oxidation",  J. Power Sources, 2012,205: 239.

 

[22] Li D., Müller M.B., Gilje S., Kaner R.B. and Wallace G.G., "Processable aqueous dispersions of graphene nanosheets",  Nat.Nanotechnol., 2008,3: 101.

 

[23] Park S., An J., Piner R.D., Jung I., Yang D., Velamakanni A., Nguyen S.T. and Ruoff R.S., "Aqueous suspension and characterization of chemically modified graphene sheets",  Chem. Mater., 2008,20: 6592.

 

[24] Fan X., Peng W., Li Y., Li X., Wang S., Zhang G. and Zhang F., "Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation",  Adv. Mater., 2008,20: 4490.

 

[25] Park S., An J., Jung I., Piner R.D., An S.J., Li X., Velamakanni A. and Ruoff R.S., "Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents",  Nano Lett., 2009,9: 1593.

 

[26] Chien C.-C. and Jeng K.-T., "Effective preparation of carbon nanotube-supported Pt–Ru electrocatalysts",  Mater. Chem. Phys., 2006,99: 80.

 

[27] Lee K.R., Lee K.U., Lee J.W., Ahn B.T. and Woo S.I., "Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media",  Electrochem. Commun., 2010,12: 1052.

 

[28] Li Y., Wang J., Li X., Geng D., Banis M.N., Li R. and Sun X., "Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries",  Electrochem. Commun., 2012,18: 12.

[29] Qu L., Liu Y., Baek J.-B. and Dai L., "Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells",  ACS nano, 2010,4: 1321.

 

[30] Long D., Li W., Ling L., Miyawaki J., Mochida I. and Yoon S.-H., "Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide",  Langmuir, 2010,26: 16096.

 

[31] Shao Y., Zhang S., Wang C., Nie Z., Liu J., Wang Y. and Lin Y., "Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction",  J. Power Sources, 2010,195: 4600.

 

[32] Shi Q. and Mu S., "Preparation of Pt/poly (pyrogallol)/graphene electrode and its electrocatalytic activity for methanol oxidation",  J. Power Sources, 2012,203: 48.

 

[33] Wang H., Hao Q., Yang X., Lu L. and Wang X., "Graphene oxide doped polyaniline for supercapacitors",  Electrochem. Commun., 2009,11: 1158.

 

[34] Gómez H., Ram M.K., Alvi F., Villalba P., Stefanakos E.L. and Kumar A., "Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors",  J. Power Sources, 2011,196: 4102.

 

[35] Zhao Y., Zhan L., Tian J., Nie S. and Ning Z., "Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium",  Electrochim. Acta, 2011,56: 1967.

 

[36] Wang J., Xu Y., Zhu J. and Ren P., "Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density",  J. Power Sources, 2012,208: 138.

 

[37] Wietecha M.S., Zhu J., Gao G., Wang N., Feng H., Gorring M.L., Kasner M.L. and Hou S., "Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation",  J. Power Sources, 2012,198: 30.

 

[38] Yang S.-Y., Chang K.-H., Lee Y.-F., Ma C.-C.M. and Hu C.-C., "Constructing a hierarchical graphene–carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters",  Electrochem. Commun., 2010,12: 1206.

 

[39] Jha N., Jafri R.I., Rajalakshmi N. and Ramaprabhu S., "Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell",  Int. J. Hydrogen Energy, 2011,36: 7284.

 

[40] Paul R.K. and Mulchandani A., "Platinum nanoflowersdecorated three-dimensional graphene–carbon nanotubes hybrid with enhanced electrocatalytic activity",  J. Power Sources, 2013,223: 23.

 

[41] Mai Y., Shi S., Zhang D., Lu Y., Gu C. and Tu J., "NiO–graphene hybrid as an anode material for lithium ion batteries",  J. Power Sources, 2012,204: 155.

 

[42] Williams G., Seger B. and Kamat P.V., "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide",  ACS nano, 2008,2: 1487.

 

[43] Cheng P., Yang Z., Wang H., Cheng W., Chen M., Shangguan W. and Ding G., "TiO 2–graphene nanocomposites for photocatalytic hydrogen production from splitting water",  Int. J. Hydrogen Energy, 2012,37: 2224.

 

[44] Taladriz-Blanco P., Rodríguez-Lorenzo L., Sanles-Sobrido M., Hervés P., Correa-Duarte M.A., Alvarez-Puebla R.A. and Liz-Marzán L.M., "SERS study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes",  ACS appl. mater. interfaces, 2008,1: 56.

 

[45] Grzelczak M., Correa‐Duarte M.A., Salgueiriño‐Maceira V., Rodríguez‐González B., Rivas J. and Liz‐Marzán L.M., "Pt‐Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes",  Angew. Chem. Int. Ed., 2007,46: 7026.

 

[46] Olek M., Hilgendorff M. and Giersig M., "A simple route for the attachment of colloidal nanocrystals to noncovalently modified multiwalled carbon nanotubes",  Colloids Surf., A, 2007,292: 83.

 

[47] Tóháti H.M., Botka B., Németh K., Pekker Á., Hackl R. and Kamarás K., "Infrared and Raman investigation of carbon nanotube‐polyallylamine hybrid systems",  physica status solidi (b), 2010,247: 2884.

 

[48] Park S., Dikin D.A., Nguyen S.T. and Ruoff R.S., "Graphene oxide sheets chemically cross-linked by polyallylamine",  J.Physical chem.C, 2009,113: 15801.

[49] Satti A., Larpent P. and Gun’ko Y., "Improvement of mechanical properties of graphene oxide/poly (allylamine) composites by chemical crosslinking",  Carbon, 2010,48: 3376.

 

[50] Fu Y.-P., Chang Y.-S. and Wen S.-B., "Microwave-induced combustion synthesis and electrical conductivity of Ce1− xGdxO2− 1/2x ceramics",  Mater. Res. Bull., 2006,41: 2260.

 

[51] H.M. Kingston S.J.H., "Microwave-EnhancedChemistry",  American Chemical Society, Washington, DC, 2005.

 

[52] Bonet F., Delmas V., Grugeon S., Urbina R.H., Silvert P. and Tekaia-Elhsissen K., "Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol",  Nanostruct. Mater., 1999,11: 1277.

 

[53] Saini P., Khobaib G., Singh M., Tandon R.P., Singh S. and Mahapatro A.K., "Functionalization of polyallylamine on graphene oxide",  Adv Mater Proceed, 2017,2: 209.

 

[54] Kim Y.-K. and Min D.-H., "Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation",  Carbon letters, 2012,13: 29.

 

[55] Saini P., Singh M., Singh S.P. and Mahapatro A.K., "Spectroscopic and electronic properties of polyallylamine functionalized graphene oxide films",  Vacuum, 2018,154: 110.

 

[56] Wang G., Shen X., Wang B., Yao J. and Park J., "Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets",  Carbon, 2009,47: 1359.

 

[57] Soin N., Roy S.S., Lim T.H. and McLaughlin J.A., "Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation",  Mater. Chem. Phys., 2011,129: 1051.

 

[58] Wu Z.-S., Ren W., Gao L., Liu B., Jiang C. and Cheng H.-M., "Synthesis of high-quality graphene with a pre-determined number of layers",  Carbon, 2009,47: 493.

[59] Morrison R. and Boyd R., "Organic Chemistry, 6th", Englewood Cliffs, NJ: Prentice Hall, 1992.

[60] Nakamoto K. and Nakamoto K., "Infrared and Raman spectra of inorganic and coordination compounds", Wiley. 1977.

 

[61] D'Urso L., Compagnini G., Puglisi O., Scandurra A. and Cataliotti R.S., "Vibrational and photoelectron investigation of amorphous fluorinated carbon films",  J.Physical chem.C, 2007,111: 17437.

 

[62] Park S. and Ruoff R.S., "Chemical methods for the production of graphenes",  Nat.Nanotechnol., 2009,4: 217.

 

[63] Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T. and Ruoff R.S., "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)",  J. Mater. Chem., 2006,16: 155.

[64] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T. and Ruoff R.S., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide",  Carbon, 2007,45: 1558.

 

[65] Hassan H.M., Abdelsayed V., Abd El Rahman S.K., AbouZeid K.M., Terner J., El-Shall M.S., Al-Resayes S.I. and El-Azhary A.A., "Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media",  J. Mater. Chem., 2009,19: 3832.

 

[66] Ferrari A.C., "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects",  Solid State Commun., 2007,143: 47.

 

[67] Berciaud S., Ryu S., Brus L.E. and Heinz T.F., "Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers",  Nano Lett., 2008,9: 346.

 

[68] Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G. and Saito R., "Perspectives on carbon nanotubes and graphene Raman spectroscopy",  Nano Lett., 2010,10: 751.

 

[69] Ferrari A.C. and Robertson J., "Interpretation of Raman spectra of disordered and amorphous carbon",  Physical review B, 2000,61: 14095.

 

[70] Kim Y.-K. and Min D.-H., "Preparation of the hybrid film of poly (allylamine hydrochloride)-functionalized graphene oxide and gold nanoparticle and its application for laser-induced desorption/ionization of small molecules",  Langmuir, 2012,28: 4453.

 

[71] Culity B. and Stock S., "Elements of X-ray Diffraction",  Edison Wesley, London, 1978.

 

[72] Kong B.-S., Yoo H.-W. and Jung H.-T., "Electrical conductivity of graphene films with a poly (allylamine hydrochloride) supporting layer",  Langmuir, 2009,25: 11008.

 

[73] Shao Y., Sui J., Yin G. and Gao Y., "Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell",  Applied Catalysis B: Environmental, 2008,79: 89.

 

[74] Shao Y., Sui J., Yin G. and Gao Y., "Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell",  Appl.Catal.B., 2008,79: 89.

 

[75] Sumpter B.G., Meunier V., Romo-Herrera J.M.,

Cruz-Silva E., Cullen D.A., Terrones H., Smith D.J. and Terrones M., "Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation",  ACS nano, 2007,1: 369.

 

[76] Honda K., Yoshimura M., Rao T.N., Tryk D., Fujishima A., Yasui K., Sakamoto Y., Nishio K. and Masuda H., "Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes",  J. Electroanal. Chem., 2001,514: 35.

 

[77] Ciureanu M. and Wang H., "Electrochemical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxidation of H 2 and H 2/CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes",  J. Electrochem. Soc., 1999,146: 4031.

 

[78] Weaver M., Chang S.-C., Leung L.-W., Jiang X., Rubel M., Szklarczyk M., Zurawski D. and Wieckowski A., "Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes",  J. Electroanal. Chem., 1992,327: 247.