Ethanol electro-oxidation on Pt/CNFs-GNPs/GDL electrode for fuel cell application

Document Type : Research Paper

Author

Department of Chemical Engineering, Urmia University, Iran

10.22104/ijhfc.2022.5686.1239

Abstract

Among direct alcohol fuel cells, the ethanol fuel cell is considered the most acceptable in terms of safety and power density. In this research, a Pt/CNFs-GNPs /GDL electrode was developed using GNPs and CNFs as a supporting medium on carbon paper and the electrodeposition method to deposit Pt catalyst. The morphology and structure features of the prepared film samples were characterized by FESEM and XRD. Pt particles of about 6.53 nm were uniformly deposited on the porous support. Catalytic activities of the prepared electrode for the ethanol oxidation reaction were evaluated through cyclic voltammetry measurements. Based on the electrochemical properties, the as-prepared Pt/CNFs-GNPs/GDL electrocatalyst exhibited a comparable activity for ethanol oxidation reaction for the Pt/C, which may be attributed to the high specific surface area of the CNFs support as well as high conductivity of graphene nanoplates. A notable reduction in the onset and peak potential of ethanol electro-oxidation from 0.55 and 0.81V for Pt/C/GDL to 0.50 and 0.79V for Pt/CNFs-GNPs/GDL electrodes, as well as a substantial increment in anodic Tafel slope values from 376 mV to 521 mV, indicates that an increase in the activity for EOR is achieved by replacing C with CNFs-GNPs.

Keywords

Main Subjects


[1] Zhou W., Zhou Z., Song S., Li W., Sun G., Tsiakaras P. and Xin Q., "Pt based anode catalysts for direct ethanol fuel cells",  Appl.Catal.B., 2003,46: 273.
[2] Song S. and Tsiakaras P., "Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs)",  Appl.Catal.B., 2006,63: 187.
[3] Brandalise M., Verjulio-Silva R., Tusi M., Correa O., Farias L., Linardi M., Spinacé E. and Neto A.O., "Electro-oxidation of ethanol using PtRuBi/C electrocatalyst prepared by borohydride reduction",  Ionics, 2009,15: 743.
[4] Wu B., Cui R., Gao Y. and Jiang Z., "Ethanol electrocatalytic oxidation on highly dispersed Pt-TiO 2/C catalysts",  Russ. J. Electrochem, 2009,45: 731.
[5] Vigier F., Coutanceau C., Perrard A., Belgsir E. and Lamy C., "Development of anode catalysts for a direct ethanol fuel cell",  J. Appl. Electrochem., 2004,34: 439.
[6] Neto A.O., Giz M.J.d., Perez J., Ticianelli E.A. and Gonzalez E.R., "The electro-oxidation of ethanol on Pt-Ru and Pt-Mo particles supported on high-surface-area carbon",  J. Electrochem. Soc., 2002,149: A272.
[7] Rao V., Simonov P., Savinova E., Plaksin G., Cherepanova S., Kryukova G. and Stimming U., "The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation",  J. Power Sources, 2005,145: 178.
[8] Alvarez G., Alcaide F., Cabot P.L., Lazaro M.J., Pastor E. and Solla-Gullon J., "Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support",  Int. J. Hydrogen Energy, 2012,37: 393.
[9] Hacker V., Wallnöfer E., Baumgartner W., Schaffer T., Besenhard J., Schröttner H. and Schmied M., "Carbon nanofiber-based active layers for fuel cell cathodes–preparation and characterization",  Electrochem. Commun., 2005,7: 377.
[10] Ji Z., Chen J., Pérez-Page M., Guo Z., Zhao Z., Cai R., Rigby M.T., Haigh S.J. and Holmes S.M., "Doped graphene/carbon black hybrid catalyst giving enhanced oxygen reduction reaction activity with high resistance to corrosion in proton exchange membrane fuel cells",  Journal of Energy Chemistry, 2022,68: 143.
[11] Fahrul Radzi Hanifah M., Jaafar J., Aziz M., Ismail A., Thirmizir M., Othman M., Rahman M.A. and Yusof N., "Electrocatalytic study of efficient synthesized graphene nanosheets incorporated with Pt nanoparticles for methanol oxidation reaction",  Electroanalysis, 2016,28: 222.
[12] Bong S., Kim Y.-R., Kim I., Woo S., Uhm S., Lee J. and Kim H., "Graphene supported electrocatalysts for methanol oxidation",  Electrochem. Commun., 2010,12: 129.
[13] Zhang J., "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications", Springer Science & Business Media. 2008,
[14] Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M. and Chen Y., "Supercapacitor devices based on graphene materials",  J.Physical chem.C, 2009,113: 13103.
[15] SuongáOu F., "Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes",  Chem. Commun., 2008: 2373.
[16] Wu Z.-S., Zhou G., Yin L.-C., Ren W., Li F. and Cheng H.-M., "Graphene/metal oxide composite electrode materials for energy storage",  Nano Energy, 2012,1: 107.
[17] Tai Z., Yan X., Lang J. and Xue Q., "Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets",  J. Power Sources, 2012,199: 373.
[18] Rakhi R. and Alshareef H.N., "Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes",  J. Power Sources, 2011,196: 8858.
[19] Saito T., Nishiyama Y., Putaux J.-L., Vignon M. and Isogai A., "Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose",  Biomacromolecules, 2006,7: 1687.
[20] Hajian A., Lindstrom S.B., Pettersson T., Hamedi M.M. and Wagberg L., "Understanding the dispersive action of nanocellulose for carbon nanomaterials",  Nano Lett., 2017,17: 1439.
[21] Burchell T.D., "Carbon materials for advanced technologies", Elsevier, Oak Ridge, TN, USA. 1999,
[22] Tiwari A. and Syväjärvi M., "Graphene materials: fundamentals and emerging applications", John Wiley & Sons, Hoboken, NJ, USA. 2015,
[23] Huang H., Chen H., Sun D. and Wang X., "Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells",  J. Power Sources, 2012,204: 46.
[24] Dong L., Gari R.R.S., Li Z., Craig M.M. and Hou S., "Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation",  Carbon, 2010,48: 781.
[25] Yoo E., Okada T., Akita T., Kohyama M., Honma I. and Nakamura J., "Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells",  J. Power Sources, 2011,196: 110.
[26] Guo S., Dong S. and Wang E., "Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation",  ACS nano, 2010,4: 547.
[27] Yaldagard M., "Synthesis and electrochemical characterization of Graphene-Polyallylamine Nanocomposites as a New Supports of Pt Catalyst for Direct Methanol Fuel Cell Application",  Iranian Journal of Hydrogen & Fuel Cell, 2019,6: 141.
[28] Yaldagard M., "Buckypaper-based catalytic electrode containing graphene nanoplates and ZrO2 nanorod composite to improve PEMFC performance",  Iranian Journal of Hydrogen & Fuel Cell, 2019,5: 57.
[29] Wang G., Shen X., Wang B., Yao J. and Park J., "Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets",  Carbon, 2009,47: 1359.
[30] Brown B., Swain B., Hiltwine J., Brooks D.B. and Zhou Z., "Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance",  J. Power Sources, 2014,272: 979.
[31] Hou M., Xu M. and Li B., "Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure",  ACS Sustainable Chemistry & Engineering, 2018,6: 2983.
[32] Yaldagard M., Seghatoleslami N. and Jahanshahi M., "Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell",  Appl. Surf. Sci., 2014,315: 222.
[33] D'Urso L., Compagnini G., Puglisi O., Scandurra A. and Cataliotti R.S., "Vibrational and photoelectron investigation of amorphous fluorinated carbon films",  J.Physical chem.C, 2007,111: 17437.
[34] Park S. and Ruoff R.S., "Chemical methods for the production of graphenes",  Nat.Nanotechnol., 2009,4: 217.
[35] Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T. and Ruoff R.S., "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)",  J. Mater. Chem., 2006,16: 155.
[36] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T. and Ruoff R.S., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide",  Carbon, 2007,45: 1558.
[37] Park S., An J., Jung I., Piner R.D., An S.J., Li X., Velamakanni A. and Ruoff R.S., "Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents",  Nano Lett., 2009,9: 1593.
[38] Hassan H.M., Abdelsayed V., Abd El Rahman S.K., AbouZeid K.M., Terner J., El-Shall M.S., Al-Resayes S.I. and El-Azhary A.A., "Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media",  J. Mater. Chem., 2009,19: 3832.
[39] Ferrari A.C., "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects",  Solid State Commun., 2007,143: 47.
[40] Berciaud S., Ryu S., Brus L.E. and Heinz T.F., "Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers",  Nano Lett., 2008,9: 346.
[41] Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G. and Saito R., "Perspectives on carbon nanotubes and graphene Raman spectroscopy",  Nano Lett., 2010,10: 751.
[42] Ferrari A.C. and Robertson J., "Interpretation of Raman spectra of disordered and amorphous carbon",  Physical review B, 2000,61: 14095.
[43] Lee H., Nagaishi T., Phan D.-N., Kim M., Zhang K.-Q., Wei K. and Kim I.S., "Effect of graphene incorporation in carbon nanofiber decorated with TiO 2 for photoanode applications",  RSC advances, 2017,7: 6574.
[44] Hanifah M.F.R., Jaafar J., Othman M.H.D., Ismail A.F., Rahman M.A., Yusof N. and Aziz F., "An advanced, efficient and highly durable of reduced graphene oxide/platinum nanoparticles nanocomposite electrocatalyst fabricated via one-step method of the hydrothermal-assisted formic acid process for the electrocatalytic oxidation reaction of methanol",  Solid State Sciences, 2020,101: 106149.
[45] Hanifah M.F.R., Jaafar J., Othman M., Ismail A., Rahman M., Yusof N. and Aziz F., "A novel one-step synthesis of nanocluster-like Pt incorporated reduced graphene oxide as robust nanocatalyst for highly efficient electro-catalytic oxidation of methanol",  Mater. Lett., 2019,254: 37.
[46] Culity B. and Stock S., "Elements of X-ray Diffraction",  Edison Wesley, London, 1978.
[47] Guo J., Tokimoto T., Othman R. and Unwin P.R., "Formation of mesoscopic silver particles at micro-and nano-liquid/liquid interfaces",  Electrochem. Commun., 2003,5: 1005.
[48] Pozio A., De Francesco M., Cemmi A., Cardellini F. and Giorgi L., "Comparison of high surface Pt/C catalysts by cyclic voltammetry",  J. Power Sources, 2002,105: 13.
[49] Yu E.H., Scott K. and Reeve R.W., "A study of the anodic oxidation of methanol on Pt in alkaline solutions",  J. Electroanal. Chem., 2003,547: 17.
[50] Bai Y., Wu J., Xi J., Wang J., Zhu W., Chen L. and Qiu X., "Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst",  Electrochem. Commun., 2005,7: 1087.