Nickel oxide-gadolinium doped ceria synthesized by new methods as anodes material for solid oxide fuel cells

Document Type : Research Paper

Authors

1 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST)

2 Iranian Research Organization for science and Technology

3 University of Tehran- School of Metallurgy and Materials Engineering

Abstract

In this study, nickel oxide-gadolinium doped ceria, NiO–GDC, composite powder was synthesized by the sol-gel method with a new Ni(II) complex. New Ni(II) complex with the chemical formula [Ni(μ-L)]n(NO3)2, L = N’-(pyridine-2-yl)methylene)isonicotinohydrazide), have been used as a new precursor. The new Ni(II) complex has been prepared by the reaction between ligand, L, and Ni(NO3).6H2O by hydrothermal method. Then the NiO–GDC powders have been synthesized by Ce(NO3)3.6H2O and Gd(NO3) 3.6H2O and as-synthesized new Ni(II) complex, [Ni(μ-L)]n(NO3)2 by sol-gel method. To increase the performance of solid oxide fuel cells (SOFCs) operating at intermediate temperatures (600–800 ℃), by increasing the three-phase boundary region in the anode, the NiO-GDC powder was modified. The NiO–GDC anode powders as prepared by new precursor has been compared with the NiO-GDC anode powders that has been synthesized from metal nitrates as a precursor. The results showed that the modified NiO-GDC anode has more three-phase boundaries, TPB, a more uniform microstructure, a higher specific surface area, and a porous structure that effectively improved the electrochemical performance of the electrode. The resistance of half-cells of SOFC with this high-performance anode decreased by 85 % at 800 ℃ when compared to conventional half-cells.

Keywords

Main Subjects


[1] In WonChoi, WonjongYu, Myung SeokLee, Sang­bongRyu, Yoon HoLee, Suk WonCha, Gu YoungC­ho, Journal of Power Sources, Volume 531, 30 May 2022, 231320
[2] YosukeKomatsu, AnnaSciazko, YasuhikoSuzuki, ZhufengOuyang, ZhenjunJiao, NaokiShikazono, Journal of Power Sources, Volume 516, 31 Decem­ber 2021, 230670
[3] S.A.N.Franзa Junior, A.L.R.Souza, L.B.Cruz, F.Vaz, A.Ferreira, F.Bohn, W.Acchar, M.A.Correa, Ceramics International, 48 (2022) 20260-20265.
[4] T. Arjomandbigdeli, Z. Isapour, A. Malek Khacha­tourian, M. Golmohammad, Iranian J Hydrogen and fuell cell, 8 (2021) 43-49.
[5] A. Ghani Harzand, A. Nemati, M. Golmohammad, A. Malek Khachatourian, Iranian J Hydrogen and fuell cell 8 (2021) 51-58.
[6] Z. Shao, W. Zhou, Z H. Zhu, Z H, Progress in Ma­terials Science, 57 (2012), 804-874.
[7] S. Park, Ch. Woong Na, J. Ahn, R. Song, J. Lee, Journal of Asian Ceramic Societies, 2 (2014), 339- 346.
[8] T. Hosseinzadeh Sanatkar, A. Khorshidi, E, Sohou­li, J. Janczak, Inorganic Chemica Acta, 506 (2020), https://doi.org/10.1016/j.ica.2020.119537.
[9] S. Bhattacharya, M. Ray, Inorganic Chemi­ca Acta, 502 (2020), https://doi.org/10.1016/j. ica.2019.119338.
[10] Y. Daeil, Su. Qing, W. Haiyan, M. Arumugam, 146 Phys.Chem. Chem. Phys, 15 (2013), 14966-14972.
[11] F. Sadat Torknik, M. Keyanpour-Rad, A. Magh­soudipour, G. Man Choi, Ceramics International, 40 (2014), 1341-1350
[12] S. Ghamari, M. Ranjbar, M. Nabitabar, J Sol-Gel Sci Technol, 81 (2017), 236-246.
[13] B. Shaabani, A. Akbar, S. Sadat, and Z. Shagh­aghi, Polyhedron, 49 (2013), 61-66.
[14] A. Zarkov, A. Stanulis, T. Salkus, A .Kezionis, V. Jasulaitiene, R. Ramanauskas, S. Tautkus, A. Karei­va, Ceramics International, 42 (2016), 3977-3988.
[15] A. Babaei, S. Ping Jiang and Li. Jian, Journal of The Electrochemical Society, 156 (2009), 1022- 1029.
[16] M. Mousavi, V. Bйreau, C. Desplanches, C. Du­hayon, and J.-P. J. C. C. Sutter, Chem. Commun, 46 (2010), 7519-7521.
[17] M. Rivera-Jimйnez, A. J. J. M. Hernбndez-Mal­donado, and M. Materials, Microporous and Meso­porous Materials, 116 (2008), 246-252.
[18] Nakamoto, Kazuo, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
[19] J. Martinez, R. Meneses, C. Silva, Materials Sci­ence Forum, 182 (2014), 798-799.
[20] M. Brant, F. Possa, F. Lameiras, Materials Sci­ence Forum, 624 (2005), 498-499.
[21] S. Dikmen, P. Shuk, M H. Greenblatt, Solid State Sciences, 4 (2002), 585-590.
[22] A U. Chavan, A P. Jamale, S P. Patil, C H. Bho­sale, S R, Bharadwaj, P S, Patil, Ceramics Interna­tional, 38 (2012), 3191-3196.
[23] R. Ghelich, M. Keyanpour-Rad, A. Youzbashi, Z. Khakpour, Materials Research Innovations, 19 (2015), 44-50.
[24] D. Changsheng, S. Kazuhisa, M. Junichiro, H. Toshiyuki, ELSEVIER, 38 (2012), 85-92.
[25] S. Kim, H. Moon, S. Hyun, J. Moon, J. Kim, H. Lee, Solid State Ionics, 178 (2007), 1304-1309.
[26] M. Chourashiya, L. Jadhav, “Synthesis and char­acterization of 10% Gd doped ceria (GDC) depos­ited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC,” international journal of hydrogen energy, 36 (2011), 14984-14995.
[27] T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Science, 325 (2009), 852- 855.
[28] K H. Ng, S. Lidiyawati, M R. Somalu, R. Muchtar, H. Rahman, Procedia Chemistry, 19 (2016), 267- 274.
[29] S. Ahn, H. Koo, S. Bae, I. Chang, S. Cha, Y. Yoo, Ch. Park, Journal of Nanoscience and Nanotechnol­ogy,14 (2014), 8117-8121.
[30] K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure & Appl.Chem., 57 (1984), 603-619.
[31] J. Ayawanna, D. Wattanasiriwech, S. Wattanasiri­wech, K. Sato, Energy Procedia, 34 (2013), 439- 448.
[32] T. Jacobsen, P.V. Hendriksen, S. Koch, Diffusion 147 and conversion impedance in solid oxide fuel cells, Electrochim, Acta 53 (2008), 7500-7508.
[33] B. Farrell, S. Linic, Applied Catalysis B: Envi­ronmental, 183 (2016), 386-393.
[34] J. Griloa, C. Moura, D. Macedo, S. Rajesh, F. Figueiredo, Marques. F, Ceramics International, 43 (2017), 8905-8911.