Synthesis, characterization and hydrogen storage properties of Mm(Ni,Co,Mn,Al)5 alloy

Document Type : Research Paper


1 Magnetism and Superconducting Research Laboratory, Department of Physics, Faculty of Science, University of Birjand, Birjand, Iran.

2 Department of physics, Ferdowsi University of Mashhad

3 Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA


The hydrogenation characterizations of the hydrogen storage alloy MmNi4.22Co0.48Mn0.15Al0.15 (Mm= mischmetal), and the effect of hydrogenation/dehydrogenation (H/D) cycling on its structural and morphological properties are investigated. The results indicate that after several H/D cycles the alloy was pulverized into fine particles, but it kept its hexagonal CaCu5-type structure. The pressure-composition (PC) isotherms for hydrogen absorption/desorption and absorption kinetic were measured in temperature range of 293-338 K. The absorption plateau pressures were determined to be ~ 0.51, 1.22 and 2.49 bar at 293, 313 and 33 K respectively, with a maximum hydrogen storage capacity of about 5.78 at 293 K. The enthalpy (H), entropy (S) and the activation energy of reactions (Ea) were also calculated. The results show that the hydrogenation reaction rate increases with an increase in the operating temperature or pressure. The Jander diffusion (JDM) and Johnson-Mehl-Avrami (JMA) models were employed and the kinetic of hydrogenation was analyzed in detail for hydriding reaction (rate controlling steps) mechanism. The obtained results indicate that the MmNi4.22Co0.48Mn0.15Al0.15 alloy has potential to be suitable for use in practical applications.


Main Subjects

  1. Zareii S. M. and Sarhaddi R., “Structural, electronic properties and heat of formation of Mg2FeH6 complex hydride: an ab initio study”, Phys. Scr., 2012, 86: 015701.
  2. Zareii (Alavi Sadr) S. M., Arabi H., Pourarian F. and Sarhaddi R., “Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach”, Iran. J. Hydrogen Fuel Cell, 2014, 1: 27.
  3. Sakintuna B., Lamari-Darkrim F. and Hirscher M., “Metal hydride materials for solid hydrogen storage: A review”, Int. J. Hydrogen Energy, 2007, 32: 1121.
  4. Xie J-y. and Chen N-x., “Site preference and structural transition of R(Ni, M)5 (R=La, Nd, Gd), (M=Al, Fe, Co, Cu, Mn)”, J. Alloys Compd., 2004, 381: 1.
  5. Broom D. P., Hydrogen Storage Materials, Green Energy and Technology, Springer-Verlag, 2011.
  6. Asano K., Yamazaki Y. and Iijima Y., “Hydriding and dehydriding processes of LaNi5-xCox (x= 0–2) alloys under hydrogen pressure of 1–5 MPa”, Intermetallics, 2003, 11: 911.
  7. Li S. L., Wang P., Chen W., Luo G., Han X. B., Chen D. M. and Yang K., “Study on hydrogen storage properties of LaNi3.8Al1.2-xMnx alloys”, Int. J. Hydrogen Energy, 2010, 35: 12391.
  8. Mungole M. N. and Balasubramaniam R., “Hydrogen desorption kinetics in MmNi4.2Al0.8-H system”, Int. J. Hydrogen Energy, 1998, 23: 349.
  9. Mungole M. N., Balasubramaniam R., Rai K. N., “Magnetization behavior of hydrogen storage MmNi5 intermetallics with Al, Mn and Sn substitutions”, Int. J. Hydrogen Energy, 1997, 22: 679.
  10. Ayari M., Paul-Boncour V., Lamloumi J., Mathlouthi H. and Percheron-Guégan A., “Study of the structural, thermodynamic and electrochemical properties of LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) compounds used as negative electrode in Ni-MH batteries”, J. Alloys Compd., 2006, 420: 251.
  11. Ma J., Pan H., Chen C. and Wang Q., “Effect of heat treatment on the microstructure and electrochemical properties of AB5-type MlNi3.60Co0.85Mn0.40Al0.15 hydride alloy: 1.-The microstructure and P-C isotherms, Int. J. Hydrogen Energy, 2002, 27: 57.
  12. Jain I. P., Abu Dakka M. I. S and Vijay Y.K., “Hydrogen absorption in Al doped MmNi5”, Int. J. Hydrogen Energy, 2000, 25: 663.
  13. Yang S., Han S., Li Y., Yang S. and Hu L., “Effect of substituting B for Ni on electrochemical kinetic properties of AB5-type hydrogen storage alloys for high-power nickel/metal hydride batteries”, Mater. Sci. Eng. B, 2011, 176: 231.
  14. Li S. L., Chen W., Chen D. M. and Yang K., “Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3”, J. Alloys Compd., 2009, 474: 164.
  15. Ayari M., Boncour V. P., Lamloumi J. and Guegan A. P., “Magnetic properties of LaNi3.55Mn0.4Al0.3Co0.75-xFex (x=0; 0.35) compounds before and after electrochemical cycles”, J. Magn. Magn. Mater., 2002, 242–245: 850.
  16. Senoh H., Takeichi N., Takeshita H. T., Tanaka H., Kiyobayashi T. and Kuriyama N., “Hydrogenation Properties of RNi5 (R: Rare Earth) Intermetallic Compounds with Multi Pressure Plateaux”, Mater. Trans., 2003, 44: 1663.
  17. Cullity B. D. and Stock S. R., Elements of X-Ray Diffraction, Prentice Hall, 2001:192.
  18. Woolfson M. M., An introduction to X-ray crystallography, Cambridge University Press, 1997: 113.
  19. Srivastava S. and Upadhyaya R. K., “Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity”, Int. J. Hydrogen Energy, 2012, 36: 7114.
  20. Li S. L., Chen W., Luo G., Han X. B., Chen D. M., Yang K. and Chen W. P., “Effect of hydrogen absorption/desorption cycling on hydrogen storage properties of a LaNi3.8Al1.0Mn0.2 alloy”, Int. J. Hydrogen Energy, 2012, 37: 3268.
  21. Nakamura Y., Oguro K., Uehara I. and Akiba E., “X-ray diffraction peak broadening and lattice strain in LaNi5-based alloys”, J. Alloys Compd., 2000, 298: 138.
  22. Nakamura H., Nakamura Y., Fujitani S. and Yonezu I., “Cycle performance of a hydrogen-absorbing La0.8Y0.2Ni4.8Mn0.2 Alloy”, Int. J. Hydrogen Energy, 1996, 21: 457.
  23. Singh R. K., Lototsky M. V. and Srivastava O. N., “Thermodynamical, structural, hydrogen storage properties and simulation studies of P–C isotherms of (La,Mm)Ni5-yFey”, Int. J. Hydrogen Energy, 2007, 32: 2971.
  24. Friedlmeier G., Schaaf M. and Groll M., “How to Measure Pressure-Concentration-Isotherms Representative for Technical Applications”, Z. Phys. Chem., 1994, 183: 185.
  25. Cocciantelli J. M., Bernard P., Fernandez S. and Atkin J., “The influence of Co and various additives on the performance of MmNi4.3−xMn0.33Al0.4Cox hydrogen storage alloys and Ni/MH prismatic sealed cells”, J. Alloys Compd., 1997, 253–254: 642.
  26. Endo D., Sakaki K. and Akiba E., “Formation of lattice strain in MmNi4.30−xCoxAl0.30Mn0.40 (x = 0, 0.75) during hydrogenation”, J. Alloys Compd., 2008, 459: 215.
  27. Voskuilen T., Zheng Y. and Pourpoint T., “Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials”, Int. J. Hydrogen Energy, 2010, 35: 103387.
  28. Bowman R. C. and Fultz B., “Metallic Hydrides I: Hydrogen Storage and Other Gas-Phase Applications”, MRS Bull., 2002, 27: 688.
  29. Zhang T. B., Wang X. F., Hu R., Li J. S., Yang X. W., Xue X. Y. and Fu H. Z., “Hydrogen absorption properties of Zr(V1-xFex)2 intermetallic compounds”, Int. J. Hydrogen Energy, 2012, 37: 2328.
  30. Mungole M. N. and Balasubramaniam R., “Effect of hydrogen cycling on the hydrogen storage properties of MmNi4.2Al0.8”, Int. J. Hydrogen Energy, 2000, 25: 55.
  31. Cheng H. H., Yang H. G., Li S. L., Deng X. X., Chen D. M. and Yang K., “Effect of hydrogen absorption/desorption cycling on hydrogen storage performance of LaNi4.25Al0.75”, J. Alloys Compd., 2008, 453: 448.
  32. Sandrock G., “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Compd., 1999, 293-295: 877.  
  33. Pourarian F. and Wallace W. E., “The effect of substitution of Mn or Al on the hydrogen sorption characteristics of CeNi5”, Int. J. Hydrogen Energy, 1985, 10: 49.
  34. An X.H., Gu Q. F., Zhang J. Y., Chen S. L., Yu X. B. and Li Q., “Experimental investigation and thermodynamic reassessment of La-Ni and LaNi5-H systems”, Calphad, 2013, 40: 48.
  35. Da-li C., Hong-hui C., Lei M., De-min C., Man-qi L. and Ke Y., “Effects of Al partial substitution for Ni on properties of LaNi5−xAlx”, Trans. Nonferrous Met. Soc. China, 2007, 17: s967.
  36. Zhang X., Li Q. and Chou K-C., “Kinetics of hydrogen absorption in the solid solution region for Laves phase Ho1-xMmxCo2 (x = 0, 0.2 and 0.4) alloys”, Intermetallics, 2008, 16: 1258.
  37. Satya Sekhar B., Suresh P. and Muthukumar P., “Performance tests on metal hydride based hydrogen storage devices”, Int. J. Hydrogen Energy, 2013, 38: 9570.
  38. Muthukumar P., Satheesh A., Linder M., Mertz R. and Groll M., “Studies on hydriding kinetics of some La-based metal hydride alloys”, Int. J. Hydrogen Energy, 2009, 34: 7253.
  39. Ivey D. G. and Northwood D. O., “Storing energy in metal hydrides: a review of the physical metallurgy”, J. Mater. Sci., 1983, 18: 321.
  40. An X. H., Pan Y. B., Luo Q., Zhang X., Zhang J.Y. and Li Q., “Application of a new kinetic model for the hydriding kinetics of LaNi5−xAlx (0≤x≤1.0) alloys”, J. Alloys Compd., 2010, 506: 63.
  41. Ming L., Lavendar E. and Goudy A. J., “The hydriding and dehydriding kinetics of some RCo5 alloys”, Int. J. Hydrogen Energy, 1997, 22: 63.
  42. Johnson W. A. and Mehl R. F., “Reaction kinetics in processes of nucleation and growth”, Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416.
  43. Jander W., “Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen”, Z. Anorg. Allg. Chem., 1927, 163: 1.
  44. Osovizky A., Bloch J., Mintz M. H. and Jacob I., “Kinetics of hydride formation in massive LaNi5 samples”, J. Alloys Compd., 1996, 245: 168.