Effect of Solution Dielectric Constant on the Preparation of Gas Diffusion Electrode Reaction Layer for the Oxygen Reduction Reaction

Document Type : Research Paper

Authors

1 Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O.Box 14115-175, Tehran, Iran

3 Department of Chemistry, Faculty of Science, Tarbiat Modares University (TMU), Tehran, P.O. Box 14115-175, Iran

4 Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, Iran

Abstract

This study explored the impact of solvent dielectric constant on the catalyst layer of proton exchange membrane fuel cell (PEMFC) cathodes during the oxygen reduction reaction. Electrochemical analyses were conducted at 25ºC in 2.0 M H2SO4 on electrodes that had been prepared with the same Nafion and Pt loadings, but different solvent dielectric constants for ink preparation of the catalyst layer. A Nafion loading of 0.5 mg cm-2 and Pt loading of 1 mg cm-2 were employed for all electrodes. The findings of the research revealed that the dielectric constant of the ink utilized for preparing the gas diffusion electrode reaction layer has an impact on the electrode's performance for the oxygen reduction reaction. This effect was evident in both the kinetics parameters linked to the oxygen reduction reaction and the physical characteristics of the electrode surface. In the preparation of the reaction layer, an optimal electrode performance result of 4.2 was achieved in relation to the dielectric constant.

Keywords

Main Subjects


[1] Zhu, Y., Liu, Y., Huang, Y., Li, R., & Wang, Y., Two‐ Dimensional Nanomaterials for Flexible Supercapac­itors, Advanced Materials Interfaces, 2018, 5(23), 1801146. https://doi.org/10.1002/admi.201801146
[2] Gharibi, H., Mirzaie, R. A., Shams, E., Zhiani, M., & Khairmand, M. (2005). Preparation of plati­num electrocatalysts using carbon supports for ox­ygen reduction at a gas-diffusion electrode, Journal of Power Sources, 2005, 139(1-2), 61-66. https://doi. org/10.1016/j.jpowsour.2004.06.075
[3] Gharibi, H., Zhiani, M., Entezami, A. A., Mirzaie, R. A., Kheirmand, M., & Kakaei, K., Study of poly­aniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange mem­brane fuel cells, Journal of Power Sources, 2006, 155(2), 138-144. https://doi.org/10.1016/j.jpow­sour.2005.05.016
[4] Grandi, M., Rohde, S., Liu, D. J., Gollas, B., & Hacker, V., Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication – Novel materials and manufacturing processes, Jour­nal of Power Sources, 2023, 562, 232734. https://doi. org/10.1016/j.jpowsour.2023.232734
Yoon, Y.-G., Park, G.-G., Yang, T.-H., Han, J.-N., ]5[Lee, W.-Y., & Kim, C.-S., Effect of pore structure of catalyst layer in a PEMFC on its performance, Inter­national Journal of Hydrogen Energy, 2003, 28, 657- 662. https://doi.org/10.1016/S0360-3199(02)00156-8
[6] Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C., & Tisack, M. E., Advanced materi­als for improved PEMFC performance and life, Jour­nal of Power Sources, 2004, 131, 41-48. https://doi. org/10.1016/j.jpowsour.2004.01.023
[7] Scholta, J., Escher, G., Zhang, W., Kьppers, L., Jörissen, L., & Lehnert, W., Investigation on the influ­ence of channel geometries on PEMFC performance, 106
[8] Jiao, K., & Li, X., Water transport in polymer elec­trolyte membrane fuel cells, Progress in Energy and Combustion Science,2011, 37(3), 221-291. https:// doi.org/10.1016/j.pecs.2010.06.002
[9] Duan, Y., Liu, H., Zhang, W., Khotseng, L., Xu, Q., & Su, H., Materials, components, assembly and performance of flexible polymer electrolyte mem­brane fuel cell: A review. Journal of Power Sources, 2023, 555, 232369. https://doi.org/10.1016/j.jpow­sour.2022.232369
[10] Yingji, W., Ghalkhani, M., Ashrafzadeh Afshar, E., Karimi, F., Changlei, X., Quyet V. L., Vasseghian, Y., Recent progress in Biomass-derived nanoelec­trocatalysts for the sustainable energy development. Fuel, 2022, 323,124349. https://doi.org/10.1016/j. fuel.2022.124349
[11] Moeini, B., Ghalkhani, M., Avval, T. G., Linford, M. R., Abdullah Mirzaie, R., A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glu­cose Alkaline Fuel Cells. Iranian Journal of Catalysis, 2021, 11(1), 77-87.
[12] Sohrabi, S., Ghalkhani, M., Dehghanpour, S., The Electrocatalytic Stability Investigation of a Proton Manager MOF for the Oxygen Reduction Reaction in Acidic Media. Journal of Inorganic and Organome­tallic Polymers and Materials, 2019, 29 (2), 528-534. https://doi.org/10.1007/s10904-018-1025-2
[13] Du, C. Y., Yin, G. P., Cheng, X. Q., & Shi, P. F., Parametric study of a novel cathode catalyst lay­er in proton exchange membrane fuel cells. Journal of Power Sources, 2006, 160(1), 224-231. https://doi. org/10.1016/j.jpowsour.2006.01.041
[14] Matloobi, R., Abdullah Mirzaie, R., & Anaraki Firooz, A., Achievement of a novel organometallic electrocatalyst based on nickel and poly para-amin­ophenol with excellent oxygen reduction reaction activity: Promoting the commercialization of low temperature fuel cells, Sustainable Energy Technolo­gies and Assessments, 2022, 51, 101988. https://doi. org/10.1016/j.seta.2022.101988
[15] Sun, Y., Polani, S., Luo, F., Ott, S., Strasser, P., & Dionigi, F., Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells, Nature Communications, 2021, 12, 5984. https://doi.org/10.1038/s41467-021-25911-x
[16] Zhao, J., Liu, H. & Li, X. Structure, Property, and Performance of Catalyst Layers in Proton Ex­change Membrane Fuel Cells. Electrochem. Energy Rev., 2023, 6, 13. https://doi.org/10.1007/s41918- 022-00175-1
[17] Qiao, Z., Hwang, S., Li, X., Wang, C., Sama­rakoon, W., Karakalos, S., Li, D., Chen, M., He, Y., Wang, M., Liu, Z., Wang, G., Zhou, H., Feng, Z., Su, D., Spendelow, J. S., & Wu, G., 3D porous graphit­ic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphi­tization and hierarchical porosity, Energy & Environ­mental Science, 2019, 12(9), 2830-2841. https://doi. org/10.1039/C9EE01899A
[18] Choi, J., Lee, Y. J., Park, D., Jeong, H., Shin, S., Yun, H., Lim, J., Han, J., Kim, E. J., Jeon, S. S., Jung, Y., Lee, H., & Kim, B. J., Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings, Energy & Environmental Science, 2020, 13(12), 4921-4929. https://doi.org/10.1039/D0EE01095B
[19] Wilson, M. S., & Gottesfeld, S., Thin-film cata­lyst layers for polymer electrolyte fuel cell electrodes, Journal of Applied Electrochemistry, 1992, 22, 1-7. https://doi.org/10.1007/BF01093004
[20] Gulzow, E., & Kaz, T., New results of PEFC 107 electrodes produced by the DLR dry preparation tech­nique, Journal of Power Sources, 2002, 106, 122-125. https://doi.org/10.1016/S0378-7753(01)01030-8
[21] Cheng, X., Yi, B., Han, M., Zhang, J., Qiao, Y., & Yu, J., Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, Journal of Power Sources, 1999, 79, 75-81. https://doi.org/10.1016/S0378-7753(99)00046-4
[22] Fischer, A., Jindra, J., & Wendt, H., Porosi­ty and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells, Journal of Applied Electrochemistry, 1998, 28, 277-282. https://doi. org/10.1023/A:1003259531775
[23] Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., & Giorgi, L., Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochimica Acta, 2001, 46, 799- 805. https://doi.org/10.1016/S0013-4686(00)00679-4
[24] Gamburzev, S., & Appleby, A. J., Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC), Journal of Power Sources, 2002, 107, 5-12. https://doi.org/10.1016/ S0378-7753(01)00970-3
[25] Qi, Z., & Kaufman, A., Low Pt loading high per­formance cathodes for PEM fuel cells, Journal of Pow­er Sources, 2003,113, 37-43. https://doi.org/10.1016/ S0378-7753(02)00477-9
[26] Sasikumar, G., Ihm, J. W., & Ryu, H., Dependence of optimum Nafion content in catalyst layer on plati­num loading, Journal of Power Sources, 2004, 132, 11- 17. https://doi.org/10.1016/j.jpowsour.2003.12.060
[27] Sasikumar, G., Ihm, J. W., & Ryu, H., Opti­mum Nafion content in PEM fuel cell electrodes, Electrochimica Acta, 2004, 50, 601-605. https://doi. org/10.1016/j.electacta.2004.01.126
[28] Yang, T.-H., Yoon, Y.-G., Park, G.-G., Lee, W.- Y., & Kim, C.-S., Fabrication of a thin catalyst lay­er using organic solvents, Journal of Power Sources, 2004, 127, 230-233. https://doi.org/10.1016/j.jpow­sour.2003.09.018
[29] Uchida, M., Aoyama, Y., Eda, N., & Ohta, A., New Preparation Method for Polymer‐Electrolyte Fuel Cells, Journal of the Electrochemical Society, 1995,142, 463. https://doi.org/ 10.1149/1.2044068
[30] Ramya, K., Velayutham, G., Subramaniam, C. K., Rajalakshmi, N., & Dhathathreyan, K. S., Effect of solvents on the characteristics of Nafion®/PTFE composite membranes for fuel cell applications, Jour­nal of Power Sources, 2006, 160(1), 10-17. https://doi. org/10.1016/j.jpowsour.2005.12.082
[31] Song, C.-H., & Park, J.-S., Effect of dispersion solvents in catalyst inks on the performance and du­rability of catalyst layers in proton exchange mem­brane fuel cells, Energies, 2019, 12(3), 549. https:// doi.org/10.3390/en12030549
[32] Welch, C., Labouriau, A., Hjelm, R., Orler, B., Johnston, C., & Kim, Y. S., Nafion in dilute solvent systems: Dispersion or solution?. ACS Macro Let­ters, 2012, 1(12), 1403-1407. https://doi.org/10.1021/ mz3005204
[33] Jung, H.-Y., Kim, J.-Y., & Park, J.-K., Effect of Nafion dispersion solvent on the interfacial properties between the membrane and the electrode of a poly­mer electrolyte membrane-based fuel cell, Solid State Ionics, 2011, 196(1), 73-78. https://doi.org/10.1016/j. ssi.2011.06.003108
[34] Safronova, E.Y., Voropaeva, D.Y., Safronov, D.V., Stretton, N., Parshina, A.V., & Yaroslavtsev, A.B., Correlation between Nafion Morphology in Various Dispersion Liquids and Properties of the Cast Membranes. Membranes, 2023, 13(1), 13. https://doi. org/10.3390/membranes13010013.
[35] Gharibi, H., & Abdullah Mirzaie, R., Fabrication of gas-diffusion electrodes at various pressures and in­vestigation of synergetic effects of mixed electrocata­lysts on oxygen reduction reaction, Journal of Power Sources, 2003, 115, 194–202. https://doi.org/10.1016/ S0378-7753(02)00710-3
[36] Bradley, D. J., & Pitzer, K. S., Thermodynam­ics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350.degree.C and 1 kbar, The Journal of Physical Chemistry, 1979,83, 1599-1603. https://doi.org/10.1021/j100475a009
[37] Uematsue, M., & Franck, E. U. (1980). Stat­ic Dielectric Constant of Water and Steam, Journal of Physical and Chemical Reference Data, 1980, 9, 1291-1306. https://doi.org/10.1063/1.555632
[38] Harvey, A. H., & Prausnitz, J. M., Dielectric con­stants of fluid mixtures over a wide range of tempera­ture and density, Journal of Solution Chemistry, 1987, 16, 857-869. https://doi.org/10.1007/BF00650755
[39] Buckingham, A. D., The dielectric constant of a liquid, Australian Journal of Chemistry, 1953, 6, 93- 103. https://doi.org/10.1071/CH9530093
[40] Buckingham, A. D., The calculation of true dipole moments form solutions in Polar Solvents, Australian Journal of Chemistry, 1953, 6, 323-331. https://doi. org/10.1071/CH9530323
[41] Kirkwood, J. G., The Dielectric Polarization of Polar Liquids, The Journal of Chemical Physics, 1939, 7, 911-919. https://doi.org/10.1063/1.1750343
[42] Franks, F. (Ed.)., Water: A comprehensive treatise (Vol. 2), 1973, PlenumPress.
[43] Pozio, A., De Francesco, M., Cemmi, A., Car­dellini, F., & Giorgi, L., Comparison of high surface Pt/C catalysts by cyclic voltammetry, Journal of Pow­er Sources, 2002, 105, 13-19. https://doi.org/10.1016/ S0378-7753(01)00921-1
[44] Perez, J., Gonzalez, E. R., & Ticianelli, E. A., Ox­ygen electrocatalysis on thin porous coating rotating platinum electrodes, Electrochimica Acta,1998, 44, 1329. https://doi.org/10.1016/S0013-4686(98)00255- 2
[45] Ciureanu, M., & Wang, H., Electrochem­ical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxida­tion of H 2 and H 2 / CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes, Journal of the Electro­chemical Society,1999, 146, 4031. https://doi.org/ 10.1149/1.1392588
[46] Antolini, E., Giorgi, L., Pozio, A., & Passalacqa, E., Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, Journal of Pow­er Sources, 1999,77, 136. https://doi.org/10.1016/ S0378-7753(98)00186-4
[47] Parthasarathy, A., Martin, C. R., & Srinivasan, S., Investigations of the O2 Reduction Reaction at the Plat­inum/Nafion® Interface Using a Solid‐State Electro­109 chemical Cell, Journal of the Electrochemical Society, 1991, 138(4), 916. https://doi.org10.1149/1.2085747
[48] Wang, J. (2000). Analytical electrochemistry (2nd ed.). Wiley, 2000, Pages 60-63.