The effect of solvent of titanium precursor in the sol-gel process on the activity of TiO2 nanoparticles for H2 production

Document Type : Research Paper


1 Department of Chemistry, Maleke Ashtar University of Technology, Shahin-Shahr, Isfahan,Islamic Republic of Iran

2 Department of Chemistry, Maleke Ashtar University of Technology, Shahin-Shahr, Isfahan, Islamic Republic of Iran


A modified sol-gel process has been found to significantly improve the photocatalytic activity of TiO2 nanoparticle in the process of solar hydrogen production. The surface of TiO2 nanoparticles were modified by the optimization of solvent of titanium precursor (acetic acid and/or ethanol) in the sol-gel method. A multi technique approach (SEM, XRD, FTIR, UV-DRS and TGA) was used to characterize the prepared TiO2 nanoparticles. The photocatalytic hydrogen production was tested using a suspension of photocatalyst TiO2 at 10 vol. % methanol under natural solar light. The produced hydrogen was subjected to gas chromatography with a continuous flow of N2 in the photoreactor system. It was found that the TiO2 nanoparticles synthesized with acetic acid as the solvent of titanium precursor, TiO2-AA, have a better photocatalytic activity for hydrogen production compared to nanoparticles synthesized with ethanol, TiO2-EA. The obtained results showed that the better crystallinity, small size and proper surface properties of TiO2-AA nanoparticles is due to higher photoactivity. 


Main Subjects

[1] Vinothkumar N., De M., “Enhanced photocatalytic hydrogen production from water–methanol mixture using cerium and nonmetals (B/C/N/S) co-doped titanium dioxide”. Mater Renew Sustain Energy. 2014, 3:25
[2] Ismail A a., Bahnemann D.W. , “Photochemical splitting of water for hydrogen production by photocatalysis: A review”, Sol Energy Mater Sol Cells , 2014, 128:85.
[3] Hakamizadeh M., Afshar S., Tadjarodi A., et. al., “Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite”. Int. J. Hydrogen Energy 2014, 39:7262.
[4] Hong E., Choi J., Kim J. H. “ Monolithic film photocatalyst and its application for hydrogen production with repeated unit structures”, Thin Solid Films, 2013, 527:363.
[5] Moradi H., Eshaghi A., Rahman S., Ghani K., “ Ultrasonics Sonochemistry Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation”, Ultrason Sonochem, 2016, 32:314.
[6] You X., Chen F., Zhang J., “ Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method”. J. Sol-Gel Sci Technol , 2005, 34:181.
[7] Vetrivel V., Rajendran K., Kalaiselvi V., “  Synthesis and characterization of Pure Titanium dioxide nanoparticles by Sol- gel method”, International Journal of ChemTech Research, 2015, 7:1090.
[8] Aranda M. S., Pineda M., Hernández J., et. al., “Redalyc.Physical properties of TiO2 prepared by sol-gel under different pH conditions for photocatalysis”, Superficies y Vacío, 2005,  18:46.
[9] Sahu M., Biswas P., “Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor”, Nanoscale Res Lett, 2011, 6:441. 
[10] Sugapriya S., Sriram R., Lakshmi S., “ Effect of annealing on TiO2 nanoparticles”,  Optik , 2013, 124:4971.
[11] Wetchakun N., Incessungvorn B., Wetchakun K., Phanichphant S.,”Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method”. Mater Lett, 2012, 82:195.
[12] Hamadanian M., Reisi-Vanani  A., Majedi  A., “Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles”. Appl Surf Sci., 2010,  256:1837.
[13] Wang Y., He Y., Lai Q., Fan M., “Review of the progress in preparing nano TiO2: An important environmental engineering material”, J. Environ Sci., 2014, 26:2139.
[14] Fröschl T., Hörmann U., Kubiak P., et. al., “High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis”, Chem. Soc. Rev., 2012, 41:5313.
[15] Xin G., Yu B., Pan H., Wen B., “ Enhancement of photocatalysis for H2 evolution on annealed Nano-Titania”. Mater Sci. Semicond Process, 2014, 25:153–158.
[16] Vijayalakshmi R., Rajendran V., “Synthesis and characterization of nano-TiO2 via different methods”, 2012, 4:1183–1190.
[17] Loryuenyong V, Jarunsak N, Chuangchai T, Buasri A., “The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles”. Adv Mater Sci Eng.(2014) 348427.
[18] Luo S, Wang ÆF, Shi ÆZ  “Preparation of highly active photocatalyst anatase TiO2 by mixed template method”, 2009, 1–7.
[19] Dinh CT, Nguyen TD, Kleitz F, Do TO  “A solvothermal single-step route towards shape-controlled titanium dioxide nanocrystals”. Can J. Chem. Eng., 2012, 90:8–17.
[20] Naghibi S, Faghihi Sani MA, Madaah Hosseini HR “Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol-gel technique”. Ceram Int., 2014,  40:4193–4201.
[21] Zhang P, Tang B, Xia W, et al  “Preparation and Characterizations of TiO2 Nanoparticles by Sol-Gel Process using DMAC Solvent”.(MMECEB 2015), 2016, 892–895.
[22] Melián E.P., Suárez M.N., Jardiel T, et. al.,” Influence of nickel in the hydrogen production activity of TiO2”, Appl Catal B Environ, 2014, 192:152.
[23] Delekar S.D., Yadav H.M., Achary S.N., et. al., “Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles”, Appl Surf Sci, 2012, 263:536.
[24] Sun T., Liu E., Fan J., et. al., “High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method”, Chem. Eng. J., 2013, 228:896.
[25] D’Arienzo M., Dozzi M.V., Redaelli M., et al. “Crystal Surfaces and Fate of Photogenerated Defects in Shape Controlled Anatase Nanocrystals: Drawing Useful Relations to Improve the H 2 yield in Methanol Photosteam Reforming”, J. Phys. Chem. C., 2015, 119 (22):12385.
[26] Deng F., Luo X., Li K., et. al., “The effect of vinyl-containing ionic liquid on the photocatalytic activity of iron-doped TiO2”, J. Mol. Catal. A Chem., 2013, 366:222.
[27] Barakat NAM., Kanjwal M.A., Chronakis I.S., Kim H.Y. “Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers”, J. Mol. Catal. A Chem., 2013, 366:333.
[28] Suwarnkar MB., Dhabbe RS., Kadam AN., Garadkar KM.”Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method”, Ceram Int., 2014, 40:5489
[29] H. R. Pouretedal, O. shevidi, M. Nasiri, “ Red water treatment by photodegradation process in presence of modified TiO2 nanoparticles and validation of treatment efficiency by MLR technique”. J. Iran Chem. Soc., 2016, 3–10.
[30] Mohamed RM., McKinney DL., Sigmund WM., “Enhanced nanocatalysts”, Mater Sci. Eng. R. Reports, 2012, 73:1.
[31] Hanaor DAH., Sorrell CC., “ Review of the anatase to rutile phase transformation”., 2011, 855–874.
[32] He F., Ma F., Li T., Li G, “Solvothermal synthesis of N-doped TiO2 nanoparticles using different nitrogen sources and their photocatalytic activity for degradation of benzene”, Chinese J. Catal., 2013, 34:2263.
[33] Liu D.R., Wei C.D., Xue B., et. al. “Synthesis and photocatalytic activity of N-doped NaTaO3 compounds calcined at low temperature”, J. Hazard Mater, 2010, 182:50.
[34] Wang Q., Lian J., Bai Y., et al., “Materials Science in Semiconductor Processing Photocatalytic activity of hydrogen production from water over TiO2 with different crystal structures”, Mater Sci  Semicond Process , 2015, 40:418.
[35] Cheng X., Yu X., Xing Z., Yang L., “Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arab J. Chem., 2012, 4:052
[36] Hamadanian M., Reisi-vanani A., Behpour M., Esmaeily AS., “Synthesis and characterization of Fe, S-codoped TiO2 nanoparticles :Application in degradation of organic water pollutants”, DES , 2011, 281:319.
[37] Campostrini R., Ischia M., Palmisano L., “Pyrolysis study of sol-gel derived TiO2 powders: part III.TiO2 anatase prepared by reacting titanium(IV) isopropoxide with acetic acid”, Journal of Thermal Analysis and Calorimetry. 2004, 75:13
[38] Hanaor D. H., Chironi I., Karatchevtseva I., et. al. “Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide”, Adv Appl Ceram, 2012, 111:149.
[39] Praveen P., Viruthagiri G., Mugundan S., Shanmugam N., “Sol-gel synthesis and characterization of pure and manganese doped TiO2 nanoparticles--a new NLO active material”, Spectrochim Acta A Mol Biomol Spectrosc, 2014, 120:548
[40] Cheng X., Yu X., Xing Z., “Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity”, Appl. Surf. Sci., 2012,  258:3244.
[41] Su W., Zhang J., Feng Z., et. al. “Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy”, J. Phys. Chem., 2008, 112:7710.
[42] Kaur M., Verma NK., “CaCO3 /TiO2 Nanoparticles Based Dye Sensitized Solar Cell”, J. Mater. Sci. Technol., 2014, 30:328.
[43] Chen H., Jin H., Dong B., “Preparation of magnetically supported chromium and sulfur co-doped TiO2 and use for photocatalysis under visible light”, Research on Chemical Intermediates, 2012, 38: 2335.
[44] H. R. Pouretedal, A. M. Sohrabi.  “Photosensitization of TiO2 by ZnS and bromo thymol blue and its application in photodegradation of para-nitrophenol”. J. Iran Chem. Soc., 2016, 13:73–79.
[45] Cheng X., Yu X., Xing Z.”Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants”, Appl Surf Sci., 2013, 268:204.
[46] Puangpetch T., Chavadej S., Sreethawong T. ”Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers”, Energy Convers Manag, 2011, 52:2256.
[47] Khan MA., Woo SI., Yang OB., “Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction”, Int. J. Hydrogen Energy, 2008, 33:5345.
[48] Yuan J., Chen M, Shi J., Shangguan W., “Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride”, Int. J. Hydrogen Energy, 2006, 31:1326.
[49] Nishijima K., Kamai T., Murakami N, et. al., “Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light”, Int. J. Photoenergy, 2007, 2008:1.
[50] Xu C., Yang W., Guo Q., et. al., “Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO2 (101)”, J. Am. Chem. Soc., 2014, 136:602.
[51] Kimi M., Yuliati L., Shamsuddin M. “Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9−2xS solid solution photocatalysts”, Int. J. Hydrogen Energy, 2011, 36:9453.
[52] Wu Z., Zhang W., Xiong F., et al.,  “Active hydrogen species on TiO2 for photocatalytic H2 production”,Phys. Chem. Chem. Phys., 2014, 16:7051.
[53] Qing G., Chuanyao Z., Zhibo M.,et. al., “Elementary photocatalytic chemistry on TiO2 surfaces”, Chem. Soc.Rev., 2016, 45:3701.
[54] Xu C., Yang W., Guo Q., et al. “Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO2(110) BT”, Journal of the American Chemical Society, 2013,  2:1–4.
[55] Zuo F., Wang L., Feng P., “Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity”, Int. J. Hydrogen Energy, 2014, 39:711.